
socat(1) socat(1)

NAME
socat − Multipurpose relay (SOcket CAT)

SYNOPSIS
socat [options] <address> <address>
socat -V
socat -h[h[h]] | -?[?[?]]
filan
procan

DESCRIPTION
Socat is a command line based utility that establishes two bidirectional byte streams and transfers data
between them. Because the streams can be constructed from a large set of different types of data sinks and
sources (see address types), and because lots of address options may be applied to the streams, socat can be
used for many different purposes. It might be one of the tools that one ‘has already needed’.

Filan is a utility that prints information about its active file descriptors to stdout. It has been written for
debuggingsocat, but might be useful for other purposes too. Use the -h option to find more infos.

Procan is a utility that prints information about process parameters to stdout. It has been written to better
understand some UNIX process properties and for debuggingsocat, but might be useful for other purposes
too.

The life cycle of asocat instance typically consists of four phases.

In theinit phase, the command line options are parsed and logging is initialized.

During theopen phase,socat opens the first address and afterwards the second address. These steps are
usually blocking; thus, especially for complex address types like socks, connection requests or authentica-
tion dialogs must be completed before the next step is started.

In the transfer phase,socat watches both streams’ read and write file descriptors viaselect() , and,
when data is available on one sideand can be written to the other side, socat reads it, performs newline
character conversions if required, and writes the data to the write file descriptor of the other stream, then
continues waiting for more data in both directions.

When one of the streams effectively reaches EOF, theclosing phase begins.Socat transfers the EOF condi-
tion to the other stream, i.e. tries to shutdown only its write stream, giving it a chance to terminate grace-
fully. For a defined timesocat continues to transfer data in the other direction, but then closes all remaining
channels and terminates.

OPTIONS
Socat provides some command line options that modify the behaviour of the program. They hav enothing
to do with so called address options that are used as parts of address specifications.

-V Print version and available feature information to stdout, and exit.

-h | -?
Print a help text to stdout describing command line options and available address types, and exit.

-hh | -??
Like -h, plus a list of the short names of all available address options. Some options are platform
dependend, so this output is helpful for checking the particular implementation.

-hhh | -???
Like -hh, plus a list of all available address option names.

-d Without this option, only fatal and error messages are generated; applying this option also prints
warning messages. See DIAGNOSTICS for more information.

-d -d Prints fatal, error, warning, and notice messages.

Oct 2008 1

socat(1) socat(1)

-d -d -d
Prints fatal, error, warning, notice, and info messages.

-d -d -d -d
Prints fatal, error, warning, notice, info, and debug messages.

-D Logs information about file descriptors before starting the transfer phase.

-ly[<facility>]
Writes messages to syslog instead of stderr; severity as defined with -d option. With optional
<facility>, the syslog type can be selected, default is "daemon".

-lf <logfile>
Writes messages to <logfile> [filename] instead of stderr.

-ls Writes messages to stderr (this is the default).

-lp<progname>
Overrides the program name printed in error messages and used for constructing environment vari-
able names.

-lu Extends the timestamp of error messages to microsecond resolution. Does not work when logging
to syslog.

-lm[<facility>]
Mixed log mode. During startup messages are printed to stderr; whensocat starts the transfer
phase loop or daemon mode (i.e. after opening all streams and before starting data transfer, or,
with listening sockets with fork option, before the first accept call), it switches logging to syslog.
With optional <facility>, the syslog type can be selected, default is "daemon".

-lh Adds hostname to log messages. Uses the value from environment variable HOSTNAME or the
value retrieved with uname() if HOSTNAME is not set.

-v Writes the transferred data not only to their target streams, but also to stderr. The output format is
text with some conversions for readability, and prefixed with "> " or "< " indicating flow direc-
tions.

-x Writes the transferred data not only to their target streams, but also to stderr. The output format is
hexadecimal, prefixed with "> " or "< " indicating flow directions. Can be combined with-v .

-b<size>
Sets the data transfer block <size> [size_t].At most <size> bytes are transferred per step. Default
is 8192 bytes.

-s By default, socat terminates when an error occurred to prevent the process from running when
some option could not be applied. With this option,socat is sloppy with errors and tries to con-
tinue. Even with this option, socat will exit on fatals, and will abort connection attempts when
security checks failed.

-t<timeout>
When one channel has reached EOF, the write part of the other channel is shut down. Then,socat
waits <timeout> [timeval] seconds before terminating. Default is 0.5 seconds. This timeout only
applies to addresses where write and read part can be closed independently. When during the time-
out interval the read part gives EOF, socat terminates without awaiting the timeout.

-T<timeout>
Total inactivity timeout: when socat is already in the transfer loop and nothing has happened for
<timeout> [timeval] seconds (no data arrived, no interrupt occurred...) then it terminates.Useful
with protocols like UDP that cannot transfer EOF.

-u Uses unidirectional mode. The first address is only used for reading, and the second address is
only used for writing (example).

-U Uses unidirectional mode in reverse direction. The first address is only used for writing, and the
second address is only used for reading.

Oct 2008 2

socat(1) socat(1)

-g During address option parsing, don’t check if the option is considered useful in the given address
environment. Use it if you want to force, e.g., appliance of a socket option to a serial device.

-L<lockfile>
If lockfile exists, exits with error. If lockfile does not exist, creates it and continues, unlinks lock-
file on exit.

-W<lockfile>
If lockfile exists, waits until it disappears. When lockfile does not exist, creates it and continues,
unlinks lockfile on exit.

-4 Use IP version 4 in case that the addresses do not implicitly or explicitly specify a version; this is
the default.

-6 Use IP version 6 in case that the addresses do not implicitly or explicitly specify a version.

ADDRESS SPECIFICATIONS
With the address command line arguments, the user gives socat instructions and the necessary information
for establishing the byte streams.

An address specification usually consists of an address type keyword, zero or more required address param-
eters separated by ’:’ from the keyword and from each other, and zero or more address options separated by
’,’.

The keyword specifies the address type (e.g., TCP4, OPEN, EXEC). For some keywords there exist syn-
onyms (’-’ for STDIO, TCP for TCP4). Keywords are case insensitive. For a few special address types, the
keyword may be omitted: Address specifications starting with a number are assumed to be FD (raw file
descriptor) addresses; if a ’/’ is found before the first ’:’ or ’,’, GOPEN (generic file open) is assumed.

The required number and type of address parameters depend on the address type. E.g., TCP4 requires a
server specification (name or address), and a port specification (number or service name).

Zero or more address options may be given with each address. They influence the address in some ways.
Options consist of an option keyword or an option keyword and a value, separated by ’=’. Option keywords
are case insensitive. For filtering the options that are useful with an address type, each option is member of
one option group. For each address type there is a set of option groups allowed. Only options belonging to
one of these address groups may be used (except with option -g).

Address specifications following the above schema are also calledsingle address specifications.Tw o single
addresses can be combined with "!!" to form adual type address for one channel. Here, the first address is
used bysocat for reading data, and the second address for writing data. There is no way to specify an
option only once for being applied to both single addresses.

Usually, addresses are opened in read/write mode. When an address is part of a dual address specification,
or when option -u or -U is used, an address might be used only for reading or for writing. Considering this
is important with some address types.

With socat version 1.5.0 and higher, the lexical analysis tries to handle quotes and parenthesis meaningfully
and allows escaping of special characters. If one of the characters ({ [’ is found, the corresponding clos-
ing character -) }] ’ - is looked for; they may also be nested. Within these constructs, socats special char-
acters and strings : , !! are not handled specially. All those characters and strings can be escaped with \ or
within ""

ADDRESS TYPES
This section describes the available address types with their keywords, parameters, and semantics.

CREATE:<filename>
Opens <filename> withcreat() and uses the file descriptor for writing. This address type
requires write-only context, because a file opened withcreat cannot be read from.<filename>
must be a valid existing or not existing path. If <filename> is a named pipe,creat() might
block; if <filename> refers to a socket, this is an error.

Oct 2008 3

socat(1) socat(1)

Option groups: FD,REG,NAMED
Useful options: mode, user, group, unlink-early, unlink-late, append
See also: OPEN, GOPEN

EXEC:<command-line>
Forks a sub process that establishes communication with its parent process and invokes the speci-
fied program withexecvp() . <command-line> is a simple command with arguments separated
by single spaces. If the program name contains a ’/’, the part after the last ’/’ is taken as ARGV[0].
If the program name is a relative path, theexecvp() semantics for finding the program via
$PATH apply. After successful program start,socat writes data to stdin of the process and reads
from its stdout using a UNIX domain socket generated bysocketpair() per default. (exam-
ple)
Option groups: FD,SOCKET,EXEC,FORK,TERMIOS
Useful options: path, fdin, fdout, chroot, su, su-d, nofork, pty, stderr, ctty, setsid, pipes, login, sig-
int, sigquit
See also: SYSTEM

FD:<fdnum>
Uses the file descriptor <fdnum>. It must already exist as valid UN*X file descriptor.
Option groups: FD (TERMIOS,REG,SOCKET)
See also: STDIO, STDIN, STDOUT, STDERR

GOPEN:<filename>
(Generic open) This address type tries to handle any file system entry except directories usefully.
<filename> may be a relative or absolute path. If it already exists, its type is checked. Incase of a
UNIX domain socket, socat connects; if connecting fails, socat assumes a datagram socket and
usessendto() calls. If the entry is not a socket, socat opens it applying theO_APPEND flag. If
it does not exist, it is opened with flagO_CREAT as a regular file (example).
Option groups: FD,REG,SOCKET,NAMED,OPEN
See also: OPEN, CREATE, UNIX-CONNECT

IP-SENDTO:<host>:<protocol>
Opens a raw IP socket. Depending on host specification or option pf, IP procotol version 4 or 6 is
used. It uses <protocol> to send packets to <host> [IP address] and receives packets from host,
ignores packets from other hosts.Protocol 255 uses the raw socket with the IP header being part
of the data.
Option groups: FD,SOCKET,IP4,IP6
Useful options: pf, ttl See also: IP4-SENDTO, IP6-SENDTO, IP-RECVFROM, IP-RECV, UDP-
SENDTO UNIX-SENDTO

INTERFACE:<interface>
Communicate with a network connected on an interface using raw packets including link level
data. <interface> is the name of the network interface. Currently only available on Linux. Option
groups: FD,SOCKET
Useful options: pf type
See also: ip-recv

IP4-SENDTO:<host>:<protocol>
Like IP-SENDTO, but always uses IPv4.
Option groups: FD,SOCKET,IP4

IP6-SENDTO:<host>:<protocol>
Like IP-SENDTO, but always uses IPv6.
Option groups: FD,SOCKET,IP6

Oct 2008 4

socat(1) socat(1)

IP-DATAGRAM:<address>:<protocol>
Sends outgoing data to the specified address which may in particular be a broadcast or multicast
address. Packets arriving on the local socket are checked if their source addresses match eventual
RANGE or TCPWRAP options. This address type can for example be used for implementing
symmetric or asymmetric broadcast or multicast communications.
Option groups: FD, SOCKET, IP4, IP6, RANGE
Useful options: bind, range, tcpwrap, broadcast, ip-multicast-loop, ip-multicast-ttl, ip-multicast-if,
ip-add-membership, ttl, tos, pf
See also: IP4-DAT AGRAM, IP6-DAT AGRAM, IP-SENDTO, IP-RECVFROM, IP-RECV, UDP-
DATA GRAM

IP4-DATAGRAM:<host>:<protocol>
Like IP-DAT AGRAM, but always uses IPv4. (example)
Option groups: FD, SOCKET, IP4, RANGE

IP6-DATAGRAM:<host>:<protocol>
Like IP-DAT AGRAM, but always uses IPv6. Please note that IPv6 does not know broadcasts.
Option groups: FD, SOCKET, IP6, RANGE

IP-RECVFROM:<protocol>
Opens a raw IP socket of <protocol>. Depending on option pf, IP procotol version 4 or 6 is used. It
receives one packet from an unspecified peer and may send one or more answer packets to that
peer. Thismode is particularly useful with fork option where each arriving packet - from arbitrary
peers - is handled by its own sub process. This allows a behaviour similar to typical UDP based
servers like ntpd or named. This address works well with IP-SENDTO address peers (see above).
Protocol 255 uses the raw socket with the IP header being part of the data.
Option groups: FD,SOCKET,IP4,IP6,CHILD,RANGE
Useful options: pf, fork, range, ttl, broadcast
See also: IP4-RECVFROM, IP6-RECVFROM, IP-SENDTO, IP-RECV, UDP-RECVFROM,
UNIX-RECVFROM

IP4-RECVFROM:<protocol>
Like IP-RECVFROM, but always uses IPv4.
Option groups: FD,SOCKET,IP4,CHILD,RANGE

IP6-RECVFROM:<protocol>
Like IP-RECVFROM, but always uses IPv6.
Option groups: FD,SOCKET,IP6,CHILD,RANGE

IP-RECV:<protocol>
Opens a raw IP socket of <protocol>. Depending on option pf, IP procotol version 4 or 6 is used. It
receives packets from multiple unspecified peers and merges the data. No replies are possible.It
can be, e.g., addressed by socat IP-SENDTO address peers.Protocol 255 uses the raw socket with
the IP header being part of the data.
Option groups: FD,SOCKET,IP4,IP6,RANGE
Useful options: pf, range
See also: IP4-RECV, IP6-RECV, IP-SENDTO, IP-RECVFROM, UDP-RECV, UNIX-RECV

IP4-RECV:<protocol>
Like IP-RECV, but always uses IPv4.
Option groups: FD,SOCKET,IP4,RANGE

IP6-RECV:<protocol>
Like IP-RECV, but always uses IPv6.
Option groups: FD,SOCKET,IP6,RANGE

Oct 2008 5

socat(1) socat(1)

OPEN:<filename>
Opens <filename> using theopen() system call (example). Thisoperation fails on UNIX
domain sockets.
Note: This address type is rarly useful in bidirectional mode.
Option groups: FD,REG,NAMED,OPEN
Useful options: creat, excl, noatime, nofollow, append, rdonly, wronly, lock, readbytes, ignoreeof
See also: CREATE, GOPEN, UNIX-CONNECT

OPENSSL:<host>:<port>
Tries to establish a SSL connection to <port> [TCP service] on <host> [IP address] using TCP/IP
version 4 or 6 depending on address specification, name resolution, or option pf.
NOTE: The server certificate is only checked for validity against cafile or capath, but not for match
with the server’s name or its IP address!
Option groups: FD,SOCKET,IP4,IP6,TCP,OPENSSL,RETRY
Useful options: cipher, method, verify, cafile, capath, certificate, bind, pf, connect-timeout, source-
port, retry
See also: OPENSSL-LISTEN, TCP

OPENSSL-LISTEN:<port>
Listens on tcp <port> [TCP service]. The IP version is 4 or the one specified with pf. When a con-
nection is accepted, this address behaves as SSL server.
Note: You probably want to use the certificate option with this address.
NOTE: The client certificate is only checked for validity against cafile or capath, but not for match
with the client’s name or its IP address!
Option groups: FD,SOCKET,IP4,IP6,TCP,LISTEN,OPENSSL,CHILD,RANGE,RETRY
Useful options: pf, cipher, method, verify, cafile, capath, certificate, fork, bind, range, tcpwrap, su,
reuseaddr, retry
See also: OPENSSL, TCP

PIPE:<filename>
If <filename> already exists, it is opened. If is does not exist, a named pipe is created and opened.
Beginning with socat version 1.4.3, the named pipe is removed when the address is closed (but see
option unlink-close
Note: When a pipe is used for both reading and writing, it works as echo service.
Note: When a pipe is used for both reading and writing, and socat tries to write more bytes than
the pipe can buffer (Linux 2.4: 2048 bytes), socat might block. Consider using socat option, e.g.,
-b 2048
Option groups: FD,NAMED,OPEN
Useful options: rdonly, nonblock, group, user, mode, unlink-early
See also: unnamed pipe

PIPE Creates an unnamed pipe and uses it for reading and writing. It works as an echo, because every-
thing written to it appeares immediately as read data.
Note: When socat tries to write more bytes than the pipe can queue (Linux 2.4: 2048 bytes), socat
might block. Consider, e.g., using option-b 2048
Option groups: FD
See also: named pipe

PROXY:<proxy>:<hostname>:<port>
Connects to an HTTP proxy server on port 8080 using TCP/IPversion 4 or 6 depending on
address specification, name resolution, or option pf, and sends a CONNECT request for host-
name:port. If the proxy grants access and succeeds to connect to the target, data transfer between
socat and the target can start. Note that the traffic need not be HTTP but can be an arbitrary proto-
col.
Option groups: FD,SOCKET,IP4,IP6,TCP,HTTP,RETRY
Useful options: proxyport, ignorecr, proxyauth, resolve, crnl, bind, connect-timeout, mss, source-
port, retry

Oct 2008 6

socat(1) socat(1)

See also: SOCKS, TCP

PTY Generates a pseudo terminal (pty) and uses its master side. Another process may open the pty’s
slave side using it like a serial line or terminal.(example). If both the ptmx and the openpty mech-
anisms are available, ptmx is used (POSIX).
Option groups: FD,NAMED,PTY,TERMIOS
Useful options: link, openpty, wait-slave, mode, user, group
See also: UNIX-LISTEN, PIPE, EXEC, SYSTEM

READLINE
Uses GNU readline and history on stdio to allow editing and reusing input lines (example). This
requires the GNU readline and history libraries. Note that stdio should be a (pseudo) terminal
device, otherwise readline does not seem to work.
Option groups: FD,READLINE,TERMIOS
Useful options: history, noecho
See also: STDIO

SCTP-CONNECT:<host>:<port>
Establishes an SCTP stream connection to the specified <host> [IP address] and <port> [TCP ser-
vice] using TCP/IP version 4 or 6 depending on address specification, name resolution, or option
pf.
Option groups: FD,SOCKET,IP4,IP6,SCTP,CHILD,RETRY
Useful options: bind, pf, connect-timeout, tos, mtudiscover, sctp-maxseg, sctp-nodelay, nonblock,
sourceport, retry, readbytes
See also: SCTP4-CONNECT, SCTP6-CONNECT, SCTP-LISTEN, TCP-CONNECT

SCTP4-CONNECT:<host>:<port>
Like SCTP-CONNECT, but only supports IPv4 protocol.
Option groups: FD,SOCKET,IP4,SCTP,CHILD,RETRY

SCTP6-CONNECT:<host>:<port>
Like SCTP-CONNECT, but only supports IPv6 protocol.
Option groups: FD,SOCKET,IP6,SCTP,CHILD,RETRY

SCTP-LISTEN:<port>
Listens on <port> [TCP service] and accepts a TCP/IP connection. The IP version is 4 or the one
specified with address option pf, socat option (-4, -6), or environment variable
SOCAT_DEFAULT_LISTEN_IP. Notethat opening this address usually blocks until a client con-
nects.
Option groups: FD,SOCKET,LISTEN,CHILD,RANGE,IP4,IP6,SCTP,RETRY
Useful options: crnl, fork, bind, range, tcpwrap, pf, backlog, sctp-maxseg, sctp-nodelay, su, reuse-
addr, retry, cool-write
See also: SCTP4-LISTEN, SCTP6-LISTEN, TCP-LISTEN, SCTP-CONNECT

SCTP4-LISTEN:<port>
Like SCTP-LISTEN, but only supports IPv4 protocol.
Option groups: FD,SOCKET,LISTEN,CHILD,RANGE,IP4,SCTP,RETRY

SCTP6-LISTEN:<port>
Like SCTP-LISTEN, but only supports IPv6 protocol.
Option groups: FD,SOCKET,LISTEN,CHILD,RANGE,IP6,SCTP,RETRY

SOCKET-CONNECT:<domain>:<protocol>:<remote-address>
Creates a stream socket using the first and second given socket parameters andSOCK_STREAM
(see man socket(2)) and connects to the remote-address. The two socket parameters have to be
specified by int numbers. Consult your OS documentation and include files to find the appropriate
values. The remote-address must be the data representation of a sockaddr structure without
sa_family and (BSD) sa_len components.
Please note that you can - beyond the options of the specified groups - also use options of higher
level protocols when you apply socat option -g.

Oct 2008 7

socat(1) socat(1)

Option groups: FD,SOCKET,CHILD,RETRY
Useful options: bind, setsockopt-int, setsockopt-bin, setsockopt-string
See also: TCP, UDP-CONNECT, UNIX-CONNECT, SOCKET-LISTEN, SOCKET-SENDTO

SOCKET-DATAGRAM:<domain>:<type>:<protocol>:<remote-address>
Creates a datagram socket using the first three given socket parameters (see man socket(2)) and
sends outgoing data to the remote-address. The three socket parameters have to be specified by int
numbers. Consult your OS documentation and include files to find the appropriate values. The
remote-address must be the data representation of a sockaddr structure without sa_family and
(BSD) sa_len components.
Please note that you can - beyond the options of the specified groups - also use options of higher
level protocols when you apply socat option -g.
Option groups: FD,SOCKET,RANGE
Useful options: bind, range, setsockopt-int, setsockopt-bin, setsockopt-string
See also: UDP-DAT AGRAM, IP-DAT AGRAM, SOCKET-SENDTO, SOCKET-RECV, SOCKET-
RECVFROM

SOCKET-LISTEN:<domain>:<protocol>:<local-address>
Creates a stream socket using the first and second given socket parameters andSOCK_STREAM
(see man socket(2)) and waits for incoming connections on local-address. The two socket parame-
ters have to be specified by int numbers. Consult your OS documentation and include files to find
the appropriate values. The local-address must be the data representation of a sockaddr structure
without sa_family and (BSD) sa_len components.
Please note that you can - beyond the options of the specified groups - also use options of higher
level protocols when you apply socat option -g.
Option groups: FD,SOCKET,LISTEN,RANGE,CHILD,RETRY
Useful options: setsockopt-int, setsockopt-bin, setsockopt-string
See also: TCP, UDP-CONNECT, UNIX-CONNECT, SOCKET-LISTEN, SOCKET-SENDTO,
SOCKET-SENDTO

SOCKET_RECV:<domain>:<type>:<protocol>:<local-address>
Creates a socket using the three given socket parameters (see man socket(2)) and binds it to
<local-address>. Receives arriving data. The three parameters have to be specified by int numbers.
Consult your OS documentation and include files to find the appropriate values. The local-address
must be the data representation of a sockaddr structure without sa_family and (BSD) sa_len com-
ponents.
Option groups: FD,SOCKET,RANGE
Useful options: range, setsockopt-int, setsockopt-bin, setsockopt-string
See also: UDP-RECV, IP-RECV, UNIX-RECV, SOCKET-DAT AGRAM, SOCKET-SENDTO,
SOCKET-RECVFROM

SOCKET_RECVFROM:<domain>:<type>:<protocol>:<local-address>
Creates a socket using the three given socket parameters (see man socket(2)) and binds it to
<local-address>. Receives arriving data and sends replies back to the sender. The first three param-
eters have to be specified as int numbers. Consult your OS documentation and include files to find
the appropriate values. The local-address must be the data representation of a sockaddr structure
without sa_family and (BSD) sa_len components.
Option groups: FD,SOCKET,CHILD,RANGE
Useful options: fork, range, setsockopt-int, setsockopt-bin, setsockopt-string
See also: UDP-RECVFROM, IP-RECVFROM, UNIX-RECVFROM, SOCKET-DAT AGRAM,
SOCKET-SENDTO, SOCKET-RECV

SOCKET_SENDTO:<domain>:<type>:<protocol>:<remote-address>
Creates a socket using the three given socket parameters (see man socket(2)). Sends outgoing data
to the given address and receives replies. Thethree parameters have to be specified as int num-
bers. Consult your OS documentation and include files to find the appropriate values. The remote-
address must be the data representation of a sockaddr structure without sa_family and (BSD)

Oct 2008 8

socat(1) socat(1)

sa_len components.
Option groups: FD,SOCKET
Useful options: bind, setsockopt-int, setsockopt-bin, setsockopt-string
See also: UDP-SENDTO, IP-SENDTO, UNIX-SENDTO, SOCKET-DAT AGRAM, SOCKET-
RECV SOCKET-RECVFROM

SOCKS4:<socks-server>:<host>:<port>
Connects via <socks-server> [IP address] to <host> [IPv4 address] on <port> [TCP service], using
socks version 4 protocol over IP version 4 or 6 depending on address specification, name resolu-
tion, or option pf (example).
Option groups: FD,SOCKET,IP4,IP6,TCP,SOCKS4,RETRY
Useful options: socksuser, socksport, sourceport, pf, retry
See also: SOCKS4A, PROXY, TCP

SOCKS4A:<socks-server>:<host>:<port>
like SOCKS4, but uses socks protocol version 4a, thus leaving host name resolution to the socks
server.
Option groups: FD,SOCKET,IP4,IP6,TCP,SOCKS4,RETRY

STDERR
Uses file descriptor 2.
Option groups: FD (TERMIOS,REG,SOCKET)
See also: FD

STDIN Uses file descriptor 0.
Option groups: FD (TERMIOS,REG,SOCKET)
Useful options: readbytes
See also: FD

STDIO Uses file descriptor 0 for reading, and 1 for writing.
Option groups: FD (TERMIOS,REG,SOCKET)
Useful options: readbytes
See also: FD

STDOUT
Uses file descriptor 1.
Option groups: FD (TERMIOS,REG,SOCKET)
See also: FD

SYSTEM:<shell-command>
Forks a sub process that establishes communication with its parent process and invokes the speci-
fied program withsystem() . Please note that <shell-command> [string] must not contain ’,’ or
"!!", and that shell meta characters may have to be protected. Aftersuccessful program start,socat
writes data to stdin of the process and reads from its stdout.
Option groups: FD,SOCKET,EXEC,FORK,TERMIOS
Useful options: path, fdin, fdout, chroot, su, su-d, nofork, pty, stderr, ctty, setsid, pipes, sigint,
sigquit
See also: EXEC

TCP:<host>:<port>
Connects to <port> [TCP service] on <host> [IP address] using TCP/IP version 4 or 6 depending
on address specification, name resolution, or option pf.
Option groups: FD,SOCKET,IP4,IP6,TCP,RETRY
Useful options: crnl, bind, pf, connect-timeout, tos, mtudiscover, mss, nodelay, nonblock, source-
port, retry, readbytes
See also: TCP4, TCP6, TCP-LISTEN, UDP, SCTP-CONNECT, UNIX-CONNECT

TCP4:<host>:<port>
Like TCP, but only supports IPv4 protocol (example).
Option groups: FD,SOCKET,IP4,TCP,RETRY

Oct 2008 9

socat(1) socat(1)

TCP6:<host>:<port>
Like TCP, but only supports IPv6 protocol.
Option groups: FD,SOCKET,IP6,TCP,RETRY

TCP-LISTEN:<port>
Listens on <port> [TCP service] and accepts a TCP/IP connection. The IP version is 4 or the one
specified with address option pf, socat option (-4, -6), or environment variable
SOCAT_DEFAULT_LISTEN_IP. Notethat opening this address usually blocks until a client con-
nects.
Option groups: FD,SOCKET,LISTEN,CHILD,RANGE,IP4,IP6,TCP,RETRY
Useful options: crnl, fork, bind, range, tcpwrap, pf, backlog, mss, su, reuseaddr, retry, cool-write
See also: TCP4-LISTEN, TCP6-LISTEN, UDP-LISTEN, SCTP-LISTEN, UNIX-LISTEN,
OPENSSL-LISTEN, TCP-CONNECT

TCP4-LISTEN:<port>
Like TCP-LISTEN, but only supports IPv4 protocol (example).
Option groups: FD,SOCKET,LISTEN,CHILD,RANGE,IP4,TCP,RETRY

TCP6-LISTEN:<port>
Like TCP-LISTEN, but only supports IPv6 protocol.
Additional useful option: ipv6only
Option groups: FD,SOCKET,LISTEN,CHILD,RANGE,IP6,TCP,RETRY

TUN:<if-addr>/<bits>
Creates a Linux TUN/TAP device and assignes to it the address and netmask defined by the
parameters. The resulting network interface is ready for use by other processes; socat serves its
"wire side". This address requires read and write access to the tunnel cloning device, usually
/dev/net/tun .
Option groups: FD,NAMED,OPEN,TUN
Useful options: iff-up, tun-device, tun-name, tun-type, iff-no-pi
See also: ip-recv

UDP:<host>:<port>
Connects to <port> [UDP service] on <host> [IP address] using UDP/IP version 4 or 6 depending
on address specification, name resolution, or option pf.
Please note that, due to UDP protocol properties, no real connection is established; data has to be
sent for ‘connecting’ to the server, and no end-of-file condition can be transported.
Option groups: FD,SOCKET,IP4,IP6
Useful options: ttl, tos, bind, sourceport, pf
See also: UDP4, UDP6, UDP-LISTEN, TCP, IP

UDP4:<host>:<port>
Like UDP, but only supports IPv4 protocol.
Option groups: FD,SOCKET,IP4

UDP6:<host>:<port>
Like UDP, but only supports IPv6 protocol.
Option groups: FD,SOCKET,IP6

UDP-DATAGRAM:<address>:<port>
Sends outgoing data to the specified address which may in particular be a broadcast or multicast
address. Packets arriving on the local socket are checked for the correct remote port and if their
source addresses match eventual RANGE or TCPWRAP options. This address type can for exam-
ple be used for implementing symmetric or asymmetric broadcast or multicast communications.
Option groups: FD,SOCKET,IP4,IP6,RANGE
Useful options: bind, range, tcpwrap, broadcast, ip-multicast-loop, ip-multicast-ttl, ip-multicast-if,
ip-add-membership, ttl, tos, sourceport, pf
See also: UDP4-DAT AGRAM, UDP6-DAT AGRAM, UDP-SENDTO, UDP-RECVFROM, UDP-
RECV, UDP-CONNECT, UDP-LISTEN, IP-DAT AGRAM

Oct 2008 10

socat(1) socat(1)

UDP4-DATAGRAM:<address>:<port>
Like UDP-DAT AGRAM, but only supports IPv4 protocol (example1, example2).
Option groups: FD, SOCKET, IP4, RANGE

UDP6-DATAGRAM:<address>:<port>
Like UDP-DAT AGRAM, but only supports IPv6 protocol.
Option groups: FD,SOCKET, IP6,RANGE

UDP-LISTEN:<port>
Waits for a UDP/IP packet arriving on <port> [UDP service] and ‘connects’ back to sender.The
accepted IP version is 4 or the one specified with option pf.Please note that, due to UDP protocol
properties, no real connection is established; data has to arrive from the peer first, and no end-of-
file condition can be transported. Note that opening this address usually blocks until a client con-
nects.
Option groups: FD,SOCKET,LISTEN,CHILD,RANGE,IP4,IP6
Useful options: fork, bind, range, pf
See also: UDP, UDP4-LISTEN, UDP6-LISTEN, TCP-LISTEN

UDP4-LISTEN:<port>
Like UDP-LISTEN, but only support IPv4 protocol.
Option groups: FD,SOCKET,LISTEN,CHILD,RANGE,IP4

UDP6-LISTEN:<port>
Like UDP-LISTEN, but only support IPv6 protocol.
Option groups: FD,SOCKET,LISTEN,CHILD,RANGE,IP6

UDP-SENDTO:<host>:<port>
Communicates with the specified peer socket, defined by <port> [UDP service] on <host> [IP
address], using UDP/IP version 4 or 6 depending on address specification, name resolution, or
option pf. It sends packets to and receives packets from that peer socket only. This address effec-
tively implements a datagram client. It works well with socat UDP-RECVFROM and UDP-
RECV address peers.
Option groups: FD,SOCKET,IP4,IP6
Useful options: ttl, tos, bind, sourceport, pf
See also: UDP4-SENDTO, UDP6-SENDTO, UDP-RECVFROM, UDP-RECV, UDP-CONNECT,
UDP-LISTEN, IP-SENDTO

UDP4-SENDTO:<host>:<port>
Like UDP-SENDTO, but only supports IPv4 protocol.
Option groups: FD,SOCKET,IP4

UDP6-SENDTO:<host>:<port>
Like UDP-SENDTO, but only supports IPv6 protocol.
Option groups: FD,SOCKET,IP6

UDP-RECVFROM:<port>
Creates a UDP socket on <port> [UDP service] using UDP/IP version 4 or 6 depending on option
pf. It receives one packet from an unspecified peer and may send one or more answer packets to
that peer. This mode is particularly useful with fork option where each arriving packet - from arbi-
trary peers - is handled by its own sub process. This allows a behaviour similar to typical UDP
based servers like ntpd or named. This address works well with socat SENDTO address peers.
Option groups: FD,SOCKET,IP4,IP6,CHILD,RANGE
Useful options: fork, ttl, tos, bind, sourceport, pf
See also: UDP4-RECVFROM, UDP6-RECVFROM, UDP-SENDTO, UDP-RECV, UDP-CON-
NECT, UDP-LISTEN, IP-RECVFROM, UNIX-RECVFROM

UDP4-RECVFROM:<port>
Like UDP-RECVFROM, but only supports IPv4 protocol.
Option groups: FD,SOCKET,IP4,CHILD,RANGE

Oct 2008 11

socat(1) socat(1)

UDP6-RECVFROM:<port>
Like UDP-RECVFROM, but only supports IPv6 protocol.
Option groups: FD,SOCKET,IP6,CHILD,RANGE

UDP-RECV:<port>
Creates a UDP socket on <port> [UDP service] using UDP/IP version 4 or 6 depending on option
pf. It receives packets from multiple unspecified peers and merges the data. No replies are possi-
ble. It works well with, e.g., socat UDP-SENDTO address peers; it behaves similar to a syslog
server.
Option groups: FD,SOCKET,IP4,IP6,RANGE
Useful options: fork, pf, bind, sourceport, ttl, tos
See also: UDP4-RECV, UDP6-RECV, UDP-SENDTO, UDP-RECVFROM, UDP-CONNECT,
UDP-LISTEN, IP-RECV, UNIX-RECV

UDP4-RECV:<port>
Like UDP-RECV, but only supports IPv4 protocol.
Option groups: FD,SOCKET,IP4,RANGE

UDP6-RECV:<port>
Like UDP-RECV, but only supports IPv6 protocol.
Option groups: FD,SOCKET,IP6,RANGE

UNIX-CONNECT:<filename>
Connects to <filename> assuming it is a UNIX domain socket. If <filename> does not exist, this
is an error; if <filename> is not a UNIX domain socket, this is an error; if <filename> is a UNIX
domain socket, but no process is listening, this is an error.
Option groups: FD,SOCKET, NAMED,RETRY, UNIX
) Useful options: bind
See also: UNIX-LISTEN, UNIX-SENDTO, TCP

UNIX-LISTEN:<filename>
Listens on <filename> using a UNIX domain stream socket and accepts a connection.If <file-
name> exists and is not a socket, this is an error. If <filename> exists and is a UNIX domain
socket, binding to the address fails (use option unlink-early!). Note that opening this address usu-
ally blocks until a client connects.Beginning with socat version 1.4.3, the file system entry is
removed when this address is closed (but see option unlink-close) (example).
Option groups: FD,SOCKET, NAMED,LISTEN, CHILD,RETRY, UNIX
Useful options: fork, umask, mode, user, group, unlink-early
See also: UNIX-CONNECT, UNIX-RECVFROM, UNIX-RECV, TCP-LISTEN

UNIX-SENDTO:<filename>
Communicates with the specified peer socket, defined by [<filename>] assuming it is a UNIX
domain datagram socket. It sends packets to and receives packets from that peer socket only.It
works well with socat UNIX-RECVFROM and UNIX-RECV address peers.
Option groups: FD,SOCKET, NAMED,UNIX
Useful options: bind
See also: UNIX-RECVFROM, UNIX-RECV, UNIX-CONNECT, UDP-SENDTO, IP-SENDTO

UNIX-RECVFROM:<filename>
Creates a UNIX domain datagram socket [<filename>].Receives one packet and may send one or
more answer packets to that peer. This mode is particularly useful with fork option where each
arriving packet - from arbitrary peers - is handled by its own sub process. This address works well
with socat UNIX-SENDTO address peers.
Option groups: FD,SOCKET, NAMED,CHILD, UNIX
Useful options: fork
See also: UNIX-SENDTO, UNIX-RECV, UNIX-LISTEN, UDP-RECVFROM, IP-RECVFROM

Oct 2008 12

socat(1) socat(1)

UNIX-RECV:<filename>
Creates a UNIX domain datagram socket [<filename>].Receives packets from multiple unspeci-
fied peers and merges the data.No replies are possible. It can be, e.g., addressed by socat UNIX-
SENDTO address peers.It behaves similar to a syslog server. Optiongroups: FD,SOCKET,
NAMED,UNIX
See also: UNIX-SENDTO, UNIX-RECVFROM, UNIX-LISTEN, UDP-RECV, IP-RECV

UNIX-CLIENT:<filename>
Communicates with the specified peer socket, defined by [<filename>] assuming it is a UNIX
domain socket. It first tries to connect and, if that fails, assumes it is a datagram socket, thus sup-
porting both types.
Option groups: FD,SOCKET, NAMED,UNIX
Useful options: bind
See also: UNIX-CONNECT, UNIX-SENDTO, GOPEN

ABSTRACT-CONNECT:<string>

ABSTRACT-LISTEN:<string>

ABSTRACT-SENDTO:<string>

ABSTRACT-RECVFROM:<string>

ABSTRACT-RECV:<string>

ABSTRACT-CLIENT:<string>
The ABSTRACT addresses are almost identical to the related UNIX addresses except that they do
not address file system based sockets but an alternate UNIX domain address space. To archieve
this the socket address strings are prefixed with "\0" internally. This feature is available (only?) on
Linux. Option groups are the same as with the related UNIX addresses, except that the
ABSTRACT addresses are not member of the NAMED group.

ADDRESS OPTIONS
Address options can be applied to address specifications to influence the process of opening the addresses
and the properties of the resulting data channels.

For technical reasons not every option can be applied to every address type; e.g., applying a socket option
to a regular file will fail. To catch most useless combinations as early as in the open phase, the concept of
option groups was introduced. Each option belongs to one or more option groups. Options can be used only
with address types that support at least one of their option groups (but see option -g).

Address options have data types that their values must conform to.Every address option consists of just a
keyword or a keyword followed by "=value", where value must conform to the options type.Some address
options manipulate parameters of system calls; e.g., option sync sets theO_SYNC flag with theopen()
call. Otheroptions cause a system or library call; e.g., with option ‘ttl=value’ thesetsockopt(fd,
SOL_IP, IP_TTL, value, sizeof(int)) call is applied. Other options set internalsocat vari-
ables that are used during data transfer; e.g., ‘crnl’ causes explicit character conversions. Afew options
have more complex implementations; e.g., su-d (substuser-delayed) inquires some user and group infos,
stores them, and applies them later after a possiblechroot() call.

If multiple options are given to an address, their sequence in the address specification has (almost) no effect
on the sequence of their execution/application. Instead,socat has built in anoption phase model that tries to
bring the options in a useful order. Some options exist in different forms (e.g., unlink, unlink-early, unlink-
late) to control the time of their execution.

If the same option is specified more than once within one address specification, with equal or different val-
ues, the effect depends on the kind of option. Options resulting in function calls like setsockopt()
cause multiple invocations. With options that set parameters for a required call likeopen() or set internal
flags, the value of the last option occurrence is effective.

Oct 2008 13

socat(1) socat(1)

The existence or semantics of many options are system dependent.Socat usually does NOT try to emulate
missing libc or kernel features, it just provides an interface to the underlying system. So, if an operating
system lacks a feature, the related option is simply not available on this platform.

The following paragraphs introduce just the more common address options. For a more comprehensive ref-
erence and to find information about canonical option names, alias names, option phases, and platforms see
file xio.help.

FD option group

This option group contains options that are applied to a UN*X style file descriptor, no matter how it was
generated. Becauseall currentsocat address types are file descriptor based, these options may be applied
to any address.
Note: Some of these options are also member of another option group, that provides an other, non-fd based
mechanism. For these options, it depends on the actual address type and its option groups which mecha-
nism is used. The second, non-fd based mechanism is prioritized.

cloexec=<bool>
Sets theFD_CLOEXEC flag with thefcntl() system call to value <bool>. If set, the file
descriptor is closed onexec() family function calls.Socat internally handles this flag for the fds
it controls, so in most cases there will be no need to apply this option.

setlk Tries to set a discretionary write lock to the whole file using thefcntl(fd, F_SETLK, ...)
system call. If the file is already locked, this call results in an error. On Linux, when the file per-
missions for group are "S" (g-x,g+s), and the file system is locally mounted with the "mand"
option, the lock is mandatory, i.e. prevents other processes from opening the file.

setlkw
Tries to set a discretionary waiting write lock to the whole file using thefcntl(fd,
F_SETLKW, ...) system call. If the file is already locked, this call blocks. See option setlk
for information about making this lock mandatory.

setlk-rd
Tries to set a discretionary read lock to the whole file using thefcntl(fd, F_SETLK, ...)
system call. If the file is already write locked, this call results in an error.See option setlk for
information about making this lock mandatory.

setlkw-rd
Tries to set a discretionary waiting read lock to the whole file using thefcntl(fd,
F_SETLKW, ...) system call. If the file is already write locked, this call blocks. See option
setlk for information about making this lock mandatory.

flock-ex
Tries to set a blocking exclusive advisory lock to the file using theflock(fd, LOCK_EX) sys-
tem call.Socat hangs in this call if the file is locked by another process.

flock-ex-nb
Tries to set a nonblocking exclusive advisory lock to the file using theflock(fd,
LOCK_EX|LOCK_NB) system call. If the file is already locked, this option results in an error.

flock-sh
Tries to set a blocking shared advisory lock to the file using theflock(fd, LOCK_SH) system
call. Socat hangs in this call if the file is locked by another process.

flock-sh-nb
Tries to set a nonblocking shared advisory lock to the file using theflock(fd,
LOCK_SH|LOCK_NB) system call. If the file is already locked, this option results in an error.

lock Sets a blocking lock on the file. Uses the setlk or flock mechanism depending on availability on
the particular platform. If both are available, the POSIX variant (setlkw) is used.

Oct 2008 14

socat(1) socat(1)

user=<user>
Sets the <user> (owner) of the stream.If the address is member of the NAMED option group,
socat uses thechown() system call after opening the file or binding to the UNIX domain socket
(race condition!).Without filesystem entry, socat sets the user of the stream using thefchown()
system call. These calls might require root privilege.

user-late=<user>
Sets the owner of the fd to <user> with thefchown() system call after opening or connecting the
channel. Thisis useful only on file system entries.

group=<group>
Sets the <group> of the stream. If the address is member of the NAMED option group,socat uses
thechown() system call after opening the file or binding to the UNIX domain socket (race con-
dition!). Without filesystem entry, socat sets the group of the stream with thefchown() system
call. Thesecalls might require group membership or root privilege.

group-late=<group>
Sets the group of the fd to <group> with thefchown() system call after opening or connecting
the channel. This is useful only on file system entries.

mode=<mode>
Sets the <mode> [mode_t] (permissions) of the stream.If the address is member of the NAMED
option group and uses theopen() or creat() call, the mode is applied with these. If the
address is member of the NAMED option group without using these system calls,socat uses the
chmod() system call after opening the filesystem entry or binding to the UNIX domain socket
(race condition!).Otherwise,socat sets the mode of the stream usingfchmod() . These calls
might require ownership or root privilege.

perm-late=<mode>
Sets the permissions of the fd to value <mode> [mode_t] using thefchmod() system call after
opening or connecting the channel. This is useful only on file system entries.

append=<bool>
Always writes data to the actual end of file.If the address is member of the OPEN option group,
socat uses theO_APPEND flag with theopen() system call (example). Otherwise,socat applies
thefcntl(fd, F_SETFL, O_APPEND) call.

nonblock=<bool>
Tries to open or use file in nonblocking mode. Its only effects are that theconnect() call of
TCP addresses does not block, and that opening a named pipe for reading does not block.If the
address is member of the OPEN option group,socat uses theO_NONBLOCK flag with the
open() system call.Otherwise,socat applies thefcntl(fd, F_SETFL, O_NONBLOCK)
call.

binary
Opens the file in binary mode to avoid implicit line terminator conversions (Cygwin).

text Opens the file in text mode to force implicit line terminator conversions (Cygwin).

noinherit
Does not keep this file open in a spawned process (Cygwin).

cool-write
Takes it easy when write fails with EPIPE or ECONNRESET and logs the message withnotice
level instead oferror. This prevents the log file from being filled with useless error messages
when socat is used as a high volume server or proxy where clients often abort the connection.
This option is experimental.

end-close
Changes the (address dependent) method of ending a connection to just close the file descriptors.
This is useful when the connection is to be reused by or shared with other processes (example).
Normally, socket connections will be ended withshutdown(2) which terminates the socket

Oct 2008 15

socat(1) socat(1)

ev en if it is shared by multiple processes.close(2) "unlinks" the socket from the process but
keeps it active as long as there are still links from other processes.
Similarly, when an address of type EXEC or SYSTEM is ended, socat usually will explicitely kill
the sub process. With this option, it will just close the file descriptors.

ioctl-void=<request>
Calls ioctl() with the request value as second argument and NULL as third argument. This
option allows to utilize ioctls that are not explicitely implemented in socat.

ioctl-int=<reqeust>:<value>
Calls ioctl() with the request value as second argument and the integer value as third argu-
ment.

ioctl-intp=<reqeust>:<value>
Callsioctl() with the request value as second argument and a pointer to the integer value as
third argument.

ioctl-bin=<reqeust>:<value>
Callsioctl() with the request value as second argument and a pointer to the given data value as
third argument. This data must be specified in <dalan> form.

ioctl-string=<reqeust>:<value>
Calls ioctl() with the request value as second argument and a pointer to the given string as
third argument. <dalan>form.

NAMED option group

These options work on file system entries.
See also options user, group, and mode.

user-early=<user>
Changes the <user> (owner) of the file system entry before accessing it, using thechown() sys-
tem call. This call might require root privilege.

group-early=<group>
Changes the <group> of the file system entry before accessing it, using thechown() system call.
This call might require group membership or root privilege.

perm-early=<mode>
Changes the <mode> [mode_t] of the file system entry before accessing it, using thechmod()
system call. This call might require ownership or root privilege.

umask=<mode>
Sets the umask of the process to <mode> [mode_t] before accessing the file system entry (useful
with UNIX domain sockets!). This call might affect all further operations of thesocat process!

unlink-early
Unlinks (removes) the file before opening it and even before applying user-early etc.

unlink
Unlinks (removes) the file before accessing it, but after user-early etc.

unlink-late
Unlinks (removes) the file after opening it to make it inaccessible for other processes after a short
race condition.

unlink-close
Removes the addresses file system entry when closing the address.For named pipes, listening
unix domain sockets, and the symbolic links of pty addresses, the default is 1; for created files,
opened files, generic opened files, and client unix domain sockets the default is 0.

Oct 2008 16

socat(1) socat(1)

OPEN option group

The OPEN group options allow to set flags with theopen() system call. E.g., option ‘creat’ sets the
O_CREAT flag.
See also options append and nonblock.

creat=<bool>
Creates the file if it does not exist (example).

dsync=<bool>
Blockswrite() calls until metainfo is physically written to media.

excl=<bool>
With option creat, if file exists this is an error.

largefile=<bool>
On 32 bit systems, allows a file larger than 2ˆ31 bytes.

noatime
Sets the O_NOATIME options, so reads do not change the access timestamp.

noctty=<bool>
Does not make this file the controlling terminal.

nofollow=<bool>
Does not follow symbolic links.

nshare=<bool>
Does not allow to share this file with other processes.

rshare=<bool>
Does not allow other processes to open this file for writing.

rsync=<bool>
Blockswrite() until metainfo is physically written to media.

sync=<bool>
Blockswrite() until data is physically written to media.

rdonly=<bool>
Opens the file for reading only.

wronly=<bool>
Opens the file for writing only.

trunc Truncates the file to size 0 during opening it.

REG and BLK option group

These options are usually applied to a UN*X file descriptor, but their semantics make sense only on a file
supporting random access.

seek=<offset>
Applies thelseek(fd, <offset>, SEEK_SET) (or lseek64) system call, thus position-
ing the file pointer absolutely to <offset> [off_t or off64_t].

seek-cur=<offset>
Applies thelseek(fd, <offset>, SEEK_CUR) (or lseek64) system call, thus position-
ing the file pointer <offset> [off_t or off64_t] bytes relatively to its current position (which is usu-
ally 0).

seek-end=<offset>
Applies thelseek(fd, <offset>, SEEK_END) (or lseek64) system call, thus position-
ing the file pointer <offset> [off_t or off64_t] bytes relatively to the files current end.

Oct 2008 17

socat(1) socat(1)

ftruncate=<offset>
Applies theftruncate(fd, <offset>) (or ftruncate64 if available) system call, thus
truncating the file at the position <offset> [off_t or off64_t].

secrm=<bool>

unrm=<bool>

compr=<bool>

ext2-sync=<bool>

immutable=<bool>

ext2-append=<bool>

nodump=<bool>

ext2-noatime=<bool>

journal-data=<bool>

notail=<bool>

dirsync=<bool>
These options change non standard file attributes on operating systems and file systems that sup-
port these features, like Linux with ext2fs, ext3fs, or reiserfs. See man 1 chattr for information on
these options. Please note that there might be a race condition between creating the file and apply-
ing these options.

PROCESS option group

Options of this group change the process properties instead of just affecting one data channel.For EXEC
and SYSTEM addresses and for LISTEN and CONNECT type addresses with option FORK, these options
apply to the child processes instead of the main socat process.

chroot=<directory>
Performs achroot() operation to <directory> after processing the address (example). This call
might require root privilege.

chroot-early=<directory>
Performs achroot() operation to <directory> before opening the address. This call might
require root privilege.

setgid=<group>
Changes the primary <group> of the process after processing the address. This call might require
root privilege.

setgid-early=<group>
Changes the primary <group> of the process before opening the address. This call might require
root privilege.

setuid=<user>
Changes the <user> (owner) of the process after processing the address. This call might require
root privilege.

setuid-early=<user>
Changes the <user> (owner) of the process before opening the address. This call might require
root privilege.

su=<user>
Changes the <user> (owner) and groups of the process after processing the address (example).
This call might require root privilege.

Oct 2008 18

socat(1) socat(1)

su-d=<user>
Short name forsubstuser-delayed. Changes the <user> (owner) and
groups of the process after processing the address (example). The
user and his groups are retrieved before a possible chroot() . This
call might require root privilege.

setpgid=<pid_t>
Makes the process a member of the specified process group <pid_t>. If no value is given, or if the
value is 0 or 1, the process becomes leader of a new process group.

setsid
Makes the process the leader of a new session (example).

READLINE option group

These options apply to the readline address type.

history=<filename>
Reads and writes history from/to <filename> (example).

noprompt
Since version 1.4.0, socat per default tries to determine a prompt - that is then passed to the read-
line call - by remembering the last incomplete line of the output. With this option, socat does not
pass a prompt to readline, so it begins line editing in the first column of the terminal.

noecho=<pattern>
Specifies a regular pattern for a prompt that prevents the following input line from being displayed
on the screen and from being added to the history. The prompt is defined as the text that was out-
put to the readline address after the lastest newline character and before an input character was
typed. The pattern is a regular expression, e.g."ˆ[Pp]assword:.*$" or "([Uu]ser:|[Pp]assword:)".
See regex(7) for details. (example)

prompt=<string>
Passes the string as prompt to the readline function. readline prints this prompt when stepping
through the history. If this string matches a constant prompt issued by an interactive program on
the other socat address, consistent look and feel can be archieved.

APPLICATION option group

This group contains options that work at data level. Note that these options only apply to the "raw" data
transferred by socat, but not to protocol data used by addresses like PROXY.

cr Converts the default line termination character NL (’\n’, 0x0a) to/from CR (’\r’, 0x0d) when writ-
ing/reading on this channel.

crnl Converts the default line termination character NL (’\n’, 0x0a) to/from CRNL ("\r\n", 0x0d0a)
when writing/reading on this channel (example). Note:socat simply strips all CR characters.

ignoreeof
When EOF occurs on this channel,socat ignores it and tries to read more data (like "tail -f")
(example).

readbytes=<bytes>
socat reads only so many bytes from this address (the address provides only so many bytes for
transfer and pretends to be at EOF afterwards). Mustbe greater than 0.

lockfile=<filename>
If lockfile exists, exits with error. If lockfile does not exist, creates it and continues, unlinks lock-
file on exit.

Oct 2008 19

socat(1) socat(1)

waitlock=<filename>
If lockfile exists, waits until it disappears. When lockfile does not exist, creates it and continues,
unlinks lockfile on exit.

escape=<int>
Specifies the numeric code of a character that triggers EOF on the input stream. It is useful with a
terminal in raw mode (example).

SOCKET option group

These options are intended for all kinds of sockets, e.g. IP or UNIX domain. Most are applied with aset-
sockopt() call.

bind=<sockname>
Binds the socket to the given socket address using thebind() system call. The form of <sock-
name> is socket domain dependent: IP4 and IP6 allow the form [hostname|hostaddress][:(ser-
vice|port)] (example), UNIX domain sockets require <filename>.

connect-timeout=<seconds>
Abort the connection attempt after <seconds> [timeval] with error status.

interface=<interface>
Binds the socket to the given <interface>. Thisoption might require root privilege.

broadcast
For datagram sockets, allows sending to broadcast addresses and receiving packets addressed to
broadcast addresses.

debug Enables socket debugging.

dontroute
Only communicates with directly connected peers, does not use routers.

keepalive
Enables sending keepalives on the socket.

linger=<seconds>
Blocks shutdown() or close() until data transfers have finished or the given timeout [int]
expired.

oobinline
Places out-of-band data in the input data stream.

priority=<priority>
Sets the protocol defined <priority> [<int>] for outgoing packets.

rcvbuf=<bytes>
Sets the size of the receive buffer after thesocket() call to <bytes> [int]. With TCP sockets,
this value corresponds to the socket’s maximal window size.

rcvbuf-late=<bytes>
Sets the size of the receive buffer when the socket is already connected to <bytes> [int].With
TCP sockets, this value corresponds to the socket’s maximal window size.

rcvlowat=<bytes>
Specifies the minimum number of received bytes [int] until the socket layer will pass the buffered
data tosocat.

rcvtimeo=<seconds>
Sets the receive timeout [timeval].

Oct 2008 20

socat(1) socat(1)

reuseaddr
Allows other sockets to bind to an address even if parts of it (e.g. the local port) are already in use
by socat (example).

sndbuf=<bytes>
Sets the size of the send buffer after thesocket() call to <bytes> [int].

sndbuf-late=<bytes>
Sets the size of the send buffer when the socket is connected to <bytes> [int].

sndlowat=<bytes>
Specifies the minimum number of bytes in the send buffer until the socket layer will send the data
to <bytes> [int].

sndtimeo=<seconds>
Sets the send timeout to seconds [timeval].

pf=<string>
Forces the use of the specified IP version or protocol. <string> can be something like "ip4" or
"ip6". The resulting value is used as first argument to thesocket() or socketpair() calls.
This option affects address resolution and the required syntax of bind and range options.

type=<type>
Sets the type of the socket, specified as second argument to thesocket() or socketpair()
calls, to <type> [int]. Address resolution is not affected by this option. Under Linux, 1 means
stream oriented socket, 2 means datagram socket, and 3 means raw socket.

prototype
Sets the protocol of the socket, specified as third argument to thesocket() or socketpair()
calls, to <prototype> [int]. Address resolution is not affected by this option.6 means TCP, 17
means UDP.

so-timestamp
Sets the SO_TIMESTAMP socket option. This enables receiving and logging of timestamp ancil-
lary messages.

setsockopt-int=<level>:<optname>:<optval>
Invokessetsockopt() for the socket with the given parameters.level [int] is used as second
argument tosetsockopt() and specifies the layer, e.g. SOL_TCP for TCP (6 on Linux), or
SOL_SOCKET for the socket layer (1 on Linux).optname [int] is the third argument toset-
sockopt() and tells which socket option is to be set. For the actual numbers you might have to
look up the appropriate include files of your system. The 4thsetsockopt() parameter,value
[int], is passed to the function per pointer, and for the length parameter sizeof(int) is taken
implicitely.

setsockopt-bin=<level>:<optname>:<optval>
Like setsockopt-int, but <optval> must be provided in dalan format and specifies an arbi-
trary sequence of bytes; the length parameter is automatically derived from the data.

setsockopt-string=<level>:<optname>:<optval>
Like setsockopt-int, but <optval> must be a string.This string is passed to the function
with trailing null character, and the length parameter is automatically derived from the data.

UNIX option group

These options apply to UNIX domain based addresses.

unix-tightsocklen=[0|1]
On socket operations, pass a socket address length that does not include the wholestruct
sockaddr_un record but (besides other components) only the relevant part of the filename or

Oct 2008 21

socat(1) socat(1)

abstract string. Default is 1.

IP4 and IP6 option groups

These options can be used with IPv4 and IPv6 based sockets.

tos=<tos>
Sets the TOS (type of service) field of outgoing packets to <tos> [byte] (see RFC 791).

ttl=<ttl>
Sets the TTL (time to live) field of outgoing packets to <ttl> [byte].

ip-options=<data>
Sets IP options like source routing. Must be given in binary form, recommended format is a lead-
ing "x" followed by an even number of hex digits. This option may be used multiple times, data
are appended. E.g., to connect to host 10.0.0.1 via some gateway using a loose source route, use
the gateway as address parameter and set a loose source route using the optionip-
options=x8307040a000001 .
IP options are defined in RFC 791.

mtudiscover=<0|1|2>
Takes 0, 1, 2 to nev er, want, or always use path MTU discover on this socket.

ip-pktinfo
Sets the IP_PKTINFO socket option. This enables receiving and logging of ancillary messages
containing destination address and interface (Linux) (example).

ip-recverr
Sets the IP_RECVERR socket option. This enables receiving and logging of ancillary messages
containing detailled error information.

ip-recvopts
Sets the IP_RECVOPTS socket option. This enables receiving and logging of IP options ancillary
messages (Linux, *BSD).

ip-recvtos
Sets the IP_RECVTOS socket option. This enables receiving and logging of TOS (type of service)
ancillary messages (Linux).

ip-recvttl
Sets the IP_RECVTTL socket option. This enables receiving and logging of TTL (time to live)
ancillary messages (Linux, *BSD).

ip-recvdstaddr
Sets the IP_RECVDSTADDR socket option. This enables receiving and logging of ancillary mes-
sages containing destination address (*BSD) (example).

ip-recvif
Sets the IP_RECVIF socket option. This enables receiving and logging of interface ancillary mes-
sages (*BSD) (example).

ip-add-membership=<multicast-address:interface-address>

ip-add-membership=<multicast-address:interface-name>

ip-add-membership=<multicast-address:interface-index>

ip-add-membership=<multicast-address:interface-address:interface-name>

ip-add-membership=<multicast-address:interface-address:interface-index>
Makes the socket member of the specified multicast group. This is currently only implemented for
IPv4. The option takes the IP address of the multicast group and info about the desired network
interface. The most common syntax is the first one, while the others are only available on systems
that providestruct mreqn (Linux).

Oct 2008 22

socat(1) socat(1)

The indices of active network interfaces can be shown using the utilityprocan.

ip-multicast-if=<hostname>
Specifies hostname or address of the network interface to be used for multicast traffic.

ip-multicast-loop=<bool>
Specifies if outgoing multicast traffic should loop back to the interface.

ip-multicast-ttl=<byte>
Sets the TTL used for outgoing multicast traffic. Default is 1.

res-debug

res-aaonly

res-usevc

res-primary

res-igntc

res-recurse

res-defnames

res-stayopen

res-dnsrch
These options set the corresponding resolver (name resolution) option flags. Append "=0" to clear
a default option. See man resolver(5) for more information on these options. Note: these options
are valid only for the address they are applied to.

IP6 option group

These options can only be used on IPv6 based sockets. See IP options for options that can be applied to
both IPv4 and IPv6 sockets.

ipv6only=<bool>
Sets the IPV6_V6ONLY socket option. If 0, the TCP stack will also accept connections using IPv4
protocol on the same port. The default is system dependent.

ipv6-recvdstopts
Sets the IPV6_RECVDSTOPTS socket option. This enables receiving and logging of ancillary
messages containing the destination options.

ipv6-recvhoplimit
Sets the IPV6_RECVHOPLIMIT socket option. This enables receiving and logging of ancillary
messages containing the hoplimit.

ipv6-recvhopopts
Sets the IPV6_RECVHOPOPTS socket option. This enables receiving and logging of ancillary
messages containing the hop options.

ipv6-recvpktinfo
Sets the IPV6_RECVPKTINFO socket option. This enables receiving and logging of ancillary
messages containing destination address and interface.

ipv6-unicast-hops=link(TYPE_INT)(<int>)
Sets the IPV6_UNICAST_HOPS socket option. This sets the hop count limit (TTL) for outgoing
unicast packets.

ipv6-recvrthdr
Sets the IPV6_RECVRTHDR socket option. This enables receiving and logging of ancillary mes-
sages containing routing information.

Oct 2008 23

socat(1) socat(1)

ipv6-tclass
Sets the IPV6_TCLASS socket option. This sets the transfer class of outgoing packets.

ipv6-recvtclass
Sets the IPV6_RECVTCLASS socket option. This enables receiving and logging of ancillary mes-
sages containing the transfer class.

TCP option group

These options may be applied to TCP sockets. They work by invoking setsockopt() with the appropri-
ate parameters.

cork Doesn’t send packets smaller than MSS (maximal segment size).

defer-accept
While listening, accepts connections only when data from the peer arrived.

keepcnt=<count>
Sets the number of keepalives before shutting down the socket to <count> [int].

keepidle=<seconds>
Sets the idle time before sending the first keepalive to <seconds> [int].

keepintvl=<seconds>
Sets the interval between two keepalives to <seconds> [int].

linger2=<seconds>
Sets the time to keep the socket in FIN-WAIT-2 state to <seconds> [int].

mss=<bytes>
Sets the MSS (maximum segment size) after thesocket() call to <bytes> [int]. This value is
then proposed to the peer with the SYN or SYN/ACK packet (example).

mss-late=<bytes>
Sets the MSS of the socket after connection has been established to <bytes> [int].

nodelay
Turns off the Nagle algorithm for measuring the RTT (round trip time).

rfc1323
Enables RFC1323 TCP options: TCP window scale, round-trip time measurement (RTTM), and
protect against wrapped sequence numbers (PAWS) (AIX).

stdurg
Enables RFC1122 compliant urgent pointer handling (AIX).

syncnt=<count>
Sets the maximal number of SYN retransmits during connect to <count> [int].

md5sig
Enables generation of MD5 digests on the packets (FreeBSD).

noopt Disables use of TCP options (FreeBSD, MacOSX).

nopush
sets the TCP_NOPUSH socket option (FreeBSD, MacOSX).

sack-disable
Disables use the selective acknowledge feature (OpenBSD).

signature-enable
Enables generation of MD5 digests on the packets (OpenBSD).

Oct 2008 24

socat(1) socat(1)

abort-threshold=<milliseconds>
Sets the time to wait for an answer of the peer on an established connection (HP-UX).

conn-abort-threshold=<milliseconds>
Sets the time to wait for an answer of the server during the initial connect (HP-UX).

keepinit
Sets the time to wait for an answer of the server during connect() before giving up. Value in half
seconds, default is 150 (75s) (Tru64).

paws Enables the "protect against wrapped sequence numbers" feature (Tru64).

sackena
Enables selective acknowledge (Tru64).

tsoptena
Enables the time stamp option that allows RTT recalculation on existing connections (Tru64).

SCTP option group

These options may be applied to SCTP stream sockets.

sctp-nodelay
Sets the SCTP_NODELAY socket option that disables the Nagle algorithm.

sctp-maxseg=<bytes>
Sets the SCTP_MAXSEG socket option to <bytes> [int]. This value is then proposed to the peer
with the SYN or SYN/ACK packet.

UDP, TCP, and SCTP option groups

Here we find options that are related to the network port mechanism and thus can be used with UDP, TCP,
and SCTP client and server addresses.

sourceport=<port>
For outgoing (client) TCP and UDP connections, it sets the source <port> using an extrabind()
call. With TCP or UDP listen addresses, socat immediately shuts down the connection if the client
does not use this sourceport (example).

lowport
Outgoing (client) TCP and UDP connections with this option use an unused random source port
between 640 and 1023 incl. On UNIX class operating systems, this requires root privilege, and
thus indicates that the client process is authorized by local root.TCP and UDP listen addresses
with this option immediately shut down the connection if the client does not use a sourceport <=
1023. Thismechanism can provide limited authorization under some circumstances.

SOCKS option group

When using SOCKS type addresses, some socks specific options can be set.

socksport=<tcp service>
Overrides the default "socks" service or port 1080 for the socks server port with <TCP service>.

socksuser=<user>
Sends the <user> [string] in the username field to the socks server. Default is the actual user name
($LOGNAME or $USER) (example).

Oct 2008 25

socat(1) socat(1)

HTTP option group

Options that can be provided with HTTP type addresses. The only HTTP address currently implemented is
proxy-connect.

proxyport=<TCP service>
Overrides the default HTTP proxy port 8080 with <TCP service>.

ignorecr
The HTTP protocol requires the use of CR+NL as line terminator. When a proxy server violates
this standard, socat might not understand its answer.This option directs socat to interprete NL as
line terminator and to ignore CR in the answer. Nevertheless, socat sends CR+NL to the proxy.

proxyauth=<username>:<password>
Provide "basic" authentication to the proxy server. The argument to the option is used with a
"Proxy-Authorization: Base" header in base64 encoded form.
Note: username and password are visible for every user on the local machine in the process list;
username and password are transferred to the proxy server unencrypted (base64 encoded) and
might be sniffed.

resolve
Per default, socat sends to the proxy a CONNECT request containing the target hostname. With
this option, socat resolves the hostname locally and sends the IP address. Please note that, accord-
ing to RFC 2396, only name resolution to IPv4 addresses is implemented.

RANGE option group

These options check if a connecting client should be granted access. They can be applied to listening and
receiving network sockets. tcp-wrappers options fall into this group.

range=<address-range>
After accepting a connection, tests if the peer is withinrange. For IPv4 addresses, address-range
takes the form address/bits, e.g. 10.0.0.0/8, or address:mask, e.g. 10.0.0.0:255.0.0.0 (example); for
IPv6, it is [ip6-address/bits], e.g. [::1/128]. If the client address does not match,socat issues a
warning and keeps listening/receiving.

tcpwrap[=<name>]
Uses Wietse Venema’s libwrap (tcpd) library to determine if the client is allowed to connect. The
configuration files are /etc/hosts.allow and /etc/hosts.deny per default, see "man 5 hosts_access"
for more information. The optional <name> (type string) is passed to the wrapper functions as
daemon process name (example). If omitted, the basename of socats invocation (argv[0]) is
passed. Ifboth tcpwrap and range options are applied to an address, both conditions must be ful-
filled to allow the connection.

allow-table=<filename>
Takes the specified file instead of /etc/hosts.allow.

deny-table=<filename>
Takes the specified file instead of /etc/hosts.deny.

tcpwrap-etc=<directoryname>
Looks for hosts.allow and hosts.deny in the specified directory. Is overridden by options hosts-
allow and hosts-deny.

LISTEN option group

Options specific to listening sockets.

Oct 2008 26

socat(1) socat(1)

backlog=<count>
Sets the backlog value passed with thelisten() system call to <count> [int]. Default is 5.

CHILD option group

Options for addresses with multiple connections via child processes.

fork After establishing a connection, handles its channel in a child process and keeps the parent process
attempting to produce more connections, either by listening or by connecting in a loop (example).
SSL-CONNECT and SSL-LISTEN differ in when they actually fork off the child: SSL-LISTEN
forks before the SSL handshake, while SSL-CONNECT forksafterwards. RETRY and FOR-
EVER options are not inherited by the child process.

EXEC option group

Options for addresses that invoke a program.

path=<string>
Overrides the PATH environment variable for searching the program with <string>. This$PATH
value is effective in the child process too.

login Prefixesargv[0] for theexecvp() call with ’-’, thus making a shell behave as login shell.

FORK option group

EXEC or SYSTEM addresses invoke a program using a child process and transfer data betweensocat and
the program. The interprocess communication mechanism can be influenced with the following options. Per
default, asocketpair() is created and assigned to stdin and stdout of the child process, while stderr is
inherited from thesocat process, and the child process uses file descriptors 0 and 1 for communicating with
the main socat process.

nofork
Does not fork a subprocess for executing the program, instead calls execvp() or system() directly
from the actual socat instance. This avoids the overhead of another process between the program
and its peer, but introduces a lot of restrictions:

o this option can only be applied to the secondsocat address.

o it cannot be applied to a part of a dual address.

o the first socat address cannot be OPENSSL or READLINE

o socat options -b, -t, -D, -l, -v, -x become useless

o for both addresses, options ignoreeof, cr, and crnl become useless

o for the second address (the one with option nofork), options append,cloexec, flock, user, group,
mode, nonblock, perm-late, setlk, and setpgid cannot be applied. Some of these could be used on
the first address though.

pipes Creates a pair of unnamed pipes for interprocess communication instead of a socket pair.

openpty
Establishes communication with the sub process using a pseudo terminal created with
openpty() instead of the default (socketpair or ptmx).

ptmx Establishes communication with the sub process using a pseudo terminal created by opening
/dev/ptmx or /dev/ptc instead of the default (socketpair).

pty Establishes communication with the sub process using a pseudo terminal instead of a socket pair.
Creates the pty with an available mechanism. If openpty and ptmx are both available, it uses ptmx

Oct 2008 27

socat(1) socat(1)

because this is POSIX compliant (example).

ctty Makes the pty the controlling tty of the sub process (example).

stderr
Directs stderr of the sub process to its output channel by making stderr adup() of stdout (exam-
ple).

fdin=<fdnum>
Assigns the sub processes input channel to its file descriptor <fdnum> instead of stdin (0). The
program started from the subprocess has to use this fd for reading data fromsocat (example).

fdout=<fdnum>
Assigns the sub processes output channel to its file descriptor <fdnum> instead of stdout (1). The
program started from the subprocess has to use this fd for writing data tosocat (example).

sighup, sigint, sigquit
Has socat pass an eventual signal of this type to the sub process.If no address has this option,
socat terminates on these signals.

TERMIOS option group

For addresses that work on a tty (e.g., stdio, file:/dev/tty, exec:...,pty), the terminal parameters defined in the
UN*X termios mechanism are made available as address option parameters. Please note that changes of
the parameters of your interactive terminal remain effective after socat’s termination, so you might have to
enter "reset" or "stty sane" in your shell afterwards. For EXEC and SYSTEM addresses with option PTY,
these options apply to the pty by the child processes.

b0 Disconnects the terminal.

b19200
Sets the serial line speed to 19200 baud. Some other rates are possible; use something likesocat
-hh |grep ’ b[1-9]’ to find all speeds supported by your implementation.
Note: On some operating systems, these options may not be available. Use ispeed or ospeed
instead.

echo=<bool>
Enables or disables local echo (example).

icanon=<bool>
Sets or clears canonical mode, enabling line buffering and some special characters.

raw Sets raw mode, thus passing input and output almost unprocessed (example).

ignbrk=<bool>
Ignores or interpretes the BREAK character (e.g., ˆC)

brkint=<bool>

bs0

bs1

bsdly=<0|1>

clocal=<bool>

cr0
cr1
cr2
cr3

Oct 2008 28

socat(1) socat(1)

Sets the carriage return delay to 0, 1, 2, or 3, respectively. 0 means no delay, the other values are
terminal dependent.

crdly=<0|1|2|3>

cread=<bool>

crtscts=<bool>

cs5
cs6
cs7
cs8

Sets the character size to 5, 6, 7, or 8 bits, respectively.

csize=<0|1|2|3>

cstopb=<bool>
Sets two stop bits, rather than one.

dsusp=<byte>
Sets the value for the VDSUSP character that suspends the current foreground process and reacti-
vates the shell (all except Linux).

echoctl=<bool>
Echos control characters in hat notation (e.g. ˆA)

echoe=<bool>

echok=<bool>

echoke=<bool>

echonl=<bool>

echoprt=<bool>

eof=<byte>

eol=<byte>

eol2=<byte>

erase=<byte>

discard=<byte>

ff0

ff1

ffdly=<bool>

flusho=<bool>

hupcl=<bool>

icrnl=<bool>

iexten=<bool>

igncr=<bool>

ignpar=<bool>

imaxbel=<bool>

Oct 2008 29

socat(1) socat(1)

inlcr=<bool>

inpck=<bool>

intr=<byte>

isig=<bool>

ispeed=<unsigned-int>
Set the baud rate for incoming data on this line.
See also: ospeed, b19200

istrip=<bool>

iuclc=<bool>

ixany=<bool>

ixoff=<bool>

ixon=<bool>

kill=<byte>

lnext=<byte>

min=<byte>

nl0 Sets the newline delay to 0.

nl1

nldly=<bool>

noflsh=<bool>

ocrnl=<bool>

ofdel=<bool>

ofill=<bool>

olcuc=<bool>

onlcr=<bool>

onlret=<bool>

onocr=<bool>

opost=<bool>
Enables or disables output processing; e.g., converts NL to CR-NL.

ospeed=<unsigned-int>
Set the baud rate for outgoing data on this line.
See also: ispeed, b19200

parenb=<bool>
Enable parity generation on output and parity checking for input.

parmrk=<bool>

parodd=<bool>

pendin=<bool>

quit=<byte>

reprint=<byte>

sane Brings the terminal to something like a useful default state.

Oct 2008 30

socat(1) socat(1)

start=<byte>

stop=<byte>

susp=<byte>

swtc=<byte>

tab0

tab1

tab2

tab3

tabdly=<unsigned-int>

time=<byte>

tostop=<bool>

vt0

vt1

vtdly=<bool>

werase=<byte>

xcase=<bool>

xtabs

i-pop-all
With UNIX System V STREAMS, removes all drivers from the stack.

i-push=<string>
With UNIX System V STREAMS, pushes the driver (module) with the given name (string) onto
the stack. For example, to make sure that a character device on Solaris supports termios etc, use
the following options:i-pop-all,i-push=ptem,i-push=ldterm,i-push=ttcom-
pat

PTY option group

These options are intended for use with the pty address type.

link=<filename>
Generates a symbolic link that points to the actual pseudo terminal (pty). This might help to solve
the problem that ptys are generated with more or less unpredictable names, making it difficult to
directly access the socat generated pty automatically. With this option, the user can specify a "fix"
point in the file hierarchy that helps him to access the actual pty (example). Beginning withsocat
version 1.4.3, the symbolic link is removed when the address is closed (but see option unlink-
close).

wait-slave
Blocks the open phase until a process opens the slave side of the pty. Usually, socat continues
after generating the pty with opening the next address or with entering the transfer loop. With the
wait-slave option, socat waits until some process opens the slave side of the pty before continuing.
This option only works if the operating system provides thepoll() system call. And it depends
on an undocumented behaviour of pty’s, so it does not work on all operating systems. It has suc-
cessfully been tested on Linux, FreeBSD, NetBSD, and on Tru64 with openpty.

Oct 2008 31

socat(1) socat(1)

pty-interval=<seconds>
When the wait-slave option is set, socat periodically checks the HUP condition usingpoll() to
find if the pty’s slave side has been opened. The default polling interval is 1s. Use the pty-interval
option [timeval] to change this value.

OPENSSL option group

These options apply to the openssl and openssl-listen address types.

cipher=<cipherlist>
Selects the list of ciphers that may be used for the connection. See the man page ofciphers ,
sectionCIPHER LIST FORMAT, for detailed information about syntax, values, and default of
<cipherlist>.
Several cipher strings may be given, separated by ’:’. Some simple cipher strings:

3DES Usesa cipher suite with triple DES.

MD5 Usesa cipher suite with MD5.

aNULL
Uses a cipher suite without authentication.

NULL Doesnot use encryption.

HIGH Usesa cipher suite with "high" encryption.Note that the peer must support the selected property,
or the negotiation will fail.

method=<ssl-method>
Sets the protocol version to be used. Valid strings (not case sensitive) are:

SSLv2 Select SSL protocol version 2.

SSLv3 Select SSL protocol version 3.

SSLv23
Select SSL protocol version 2 or 3. This is the default when this option is not provided.

TLSv1 Select TLS protocol version 1.

verify=<bool>
Controls check of the peer’s certificate. Default is 1 (true). Disabling verify might open your
socket for everyone, making the encryption useless!

cert=<filename>
Specifies the file with the certificate and private key for authentication.The certificate must be in
OpenSSL format (*.pem).With openssl-listen, use of this option is strongly recommended.
Except with cipher aNULL, "no shared ciphers" error will occur when no certificate is given.

key=<filename>
Specifies the file with the private key. The private key may be in this file or in the file given with
the cert option. The party that has to proof that it is the owner of a certificate needs the private key.

dhparams=<filename>
Specifies the file with the Diffie Hellman parameters. These parameters may also be in the file
given with the cert option in which case the dhparams option is not needed.

cafile=<filename>
Specifies the file with the trusted (root) authority certificates. The file must be in PEM format and
should contain one or more certificates. The party that checks the authentication of its peer trusts
only certificates that are in this file.

Oct 2008 32

socat(1) socat(1)

capath=<dirname>
Specifies the directory with the trusted (root) certificates. The directory must contain certificates in
PEM format and their hashes (see OpenSSL documentation)

egd=<filename>
On some systems, openssl requires an explicit source of random data. Specify the socket name
where an entropy gathering daemon like egd provides random data, e.g. /dev/egd-pool.

pseudo
On systems where openssl cannot find an entropy source and where no entropy gathering daemon
can be utilized, this option activates a mechanism for providing pseudo entropy. This is archieved
by taking the current time in microseconds for feeding the libc pseudo random number generator
with an initial value. openssl is then feeded with output from random() calls.
NOTE:This mechanism is not sufficient for generation of secure keys!

fips Enables FIPS mode if compiled in. For info about the FIPS encryption implementation standard
see http://oss-institute.org/fips-faq.html. Thismode might require that the involved certificates are
generated with a FIPS enabled version of openssl. Setting or clearing this option on one socat
address affects all OpenSSL addresses of this process.

RETRY option group

Options that control retry of some system calls, especially connection attempts.

retry=<num>
Number of retries before the connection or listen attempt is aborted.Default is 0, which means
just one attempt.

interval=<timespec>
Time between consecutive attempts (seconds, [timespec]). Default is 1 second.

forever
Performs an unlimited number of retry attempts.

TUN option group

Options that control Linux TUN/TAP interface device addresses.

tun-device=<device-file>
Instructs socat to take another path for the TUN clone device. Default is/dev/net/tun.

tun-name=<if-name>
Gives the resulting network interface a specific name instead of the system generated (tun0, tun1,
etc.)

tun-type=[tun|tap]
Sets the type of the TUN device; use this option to generate a TAP device. See the Linux docu for
the difference between these types. When you try to establish a tunnel between two TUN devices,
their types should be the same.

iff-no-pi
Sets the IFF_NO_PI flag which controls if the device includes additional packet information in the
tunnel. Whenyou try to establish a tunnel between two TUN devices, these flags should have the
same values.

iff-up
Sets the TUN network interface status UP. Strongly recommended.

Oct 2008 33

socat(1) socat(1)

iff-broadcast
Sets the BROADCAST flag of the TUN network interface.

iff-debug
Sets the DEBUG flag of the TUN network interface.

iff-loopback
Sets the LOOPBACK flag of the TUN network interface.

iff-pointopoint
Sets the POINTOPOINT flag of the TUN device.

iff-notrailers
Sets the NOTRAILERS flag of the TUN device.

iff-running
Sets the RUNNING flag of the TUN device.

iff-noarp
Sets the NOARP flag of the TUN device.

iff-promisc
Sets the PROMISC flag of the TUN device.

iff-allmulti
Sets the ALLMULTI flag of the TUN device.

iff-master
Sets the MASTER flag of the TUN device.

iff-slave
Sets the SLAVE flag of the TUN device.

iff-multicast
Sets the MULTICAST flag of the TUN device.

iff-portsel
Sets the PORTSEL flag of the TUN device.

iff-automedia
Sets the AUTOMEDIA flag of the TUN device.

iff-dynamic
Sets the DYNAMIC flag of the TUN device.

DATA VALUES
This section explains the different data types that address parameters and address options can take.

address-range
Is currently only implemented for IPv4 and IPv6. See address-option ‘range’

bool "0" or "1"; if value is omitted, "1" is taken.

byte Anunsigned int number, read withstrtoul() , lower or equal toUCHAR_MAX .

command-line
A string specifying a program name and its arguments, separated by single spaces.

data Araw data specification following dalan syntax. Currently the only valid form is a string starting
with ’x’ followed by an even number of hex digits, specifying a sequence of bytes.

directory
A string with usual UN*X directory name semantics.

Oct 2008 34

socat(1) socat(1)

facility The name of a syslog facility in lower case characters.

fdnum Anunsigned int type, read withstrtoul() , specifying a UN*X file descriptor.

filename
A string with usual UN*X filename semantics.

group If the first character is a decimal digit, the value is read withstrtoul() as unsigned integer
specifying a group id. Otherwise, it must be an existing group name.

int A number following the rules of thestrtol() function with base "0", i.e. decimal number, octal
number with leading "0", or hexadecimal number with leading "0x". The value must fit into a C
int.

interface
A string specifying the device name of a network interface as shown by ifconfig or procan, e.g.
"eth0".

IP address
An IPv4 address in numbers-and-dots notation, an IPv6 address in hex notation enclosed in brack-
ets, or a hostname that resolves to an IPv4 or an IPv6 address.
Examples: 127.0.0.1, [::1], www.dest-unreach.org, dns1

IPv4 address
An IPv4 address in numbers-and-dots notation or a hostname that resolves to an IPv4 address.
Examples: 127.0.0.1, www.dest-unreach.org, dns2

IPv6 address
An iPv6 address in hexnumbers-and-colons notation enclosed in brackets, or a hostname that
resolves to an IPv6 address.
Examples: [::1], [1234:5678:9abc:def0:1234:5678:9abc:def0], ip6name.domain.org

long A number read withstrtol() . The value must fit into a C long.

long long
A number read withstrtoll() . The value must fit into a C long long.

off_t An implementation dependend signed number, usually 32 bits, read with strtol or strtoll.

off64_t Animplementation dependend signed number, usually 64 bits, read with strtol or strtoll.

mode_t Anunsigned integer, read withstrtoul() , specifying mode (permission) bits.

pid_t A number, read withstrtol() , specifying a process id.

port A uint16_t (16 bit unsigned number) specifying a TCP or UDP port, read withstrtoul() .

protocol
An unsigned 8 bit number, read withstrtoul() .

size_t Anunsigned number with size_t limitations, read withstrtoul .

sockname
A socket address. See address-option ‘bind’

string A sequence of characters, not containing ’\0’ and, depending on the position within the command
line, ’:’, ’,’, or "!!". Note that you might have to escape shell meta characters in the command line.

TCP service
A service name, not starting with a digit, that is resolved bygetservbyname() , or an
unsigned int 16 bit number read withstrtoul() .

timeval A double float specifying seconds; the number is mapped into a struct timeval, consisting of sec-
onds and microseconds.

timespec
A double float specifying seconds; the number is mapped into a struct timespec, consisting of sec-
onds and nanoseconds.

Oct 2008 35

socat(1) socat(1)

UDP service
A service name, not starting with a digit, that is resolved bygetservbyname() , or an
unsigned int 16 bit number read withstrtoul() .

unsigned int
A number read withstrtoul() . The value must fit into a C unsigned int.

user If the first character is a decimal digit, the value is read withstrtoul() as unsigned integer
specifying a user id. Otherwise, it must be an existing user name.

EXAMPLES
socat - TCP4:www.domain.org:80

transfers data between STDIO (-) and a TCP4 connection to port 80 of host www.domain.org.
This example results in an interactive connection similar to telnet or netcat. The stdin terminal
parameters are not changed, so you may close the relay with ˆD or abort it with ˆC.

socat -d -d READLINE,history=$HOME/.http_history \
TCP4:www.domain.org:www,crnl

this is similar to the previous example, but you can edit the current line in a bash like manner
(READLINE) and use the history file .http_history;socat prints messages about progress (-d -d).
The port is specified by service name (www), and correct network line termination characters
(crnl) instead of NL are used.

socat TCP4-LISTEN:www TCP4:www.domain.org:www

installs a simple TCP port forwarder. With TCP4-LISTEN it listens on local port "www" until a
connection comes in, accepts it, then connects to the remote host (TCP4) and starts data transfer. It
will not accept a econd connection.

socat -d -d -lmlocal2 \
TCP4-LISTEN:80,bind=myaddr1,reuseaddr,fork,su=nobody,range=10.0.0.0/8 \
TCP4:www.domain.org:80,bind=myaddr2

TCP port forwarder, each side bound to another local IP address (bind). This example handles an
almost arbitrary number of parallel or consecutive connections by fork’ing a new process after
eachaccept() . It provides a little security by su’ing to user nobody after forking; it only per-
mits connections from the private 10 network (range); due to reuseaddr, it allows immediate restart
after master process’s termination, even if some child sockets are not completely shut down. With
-lmlocal2, socat logs to stderr until successfully reaching the accept loop. Further logging is
directed to syslog with facility local2.

socat TCP4-LISTEN:5555,fork,tcpwrap=script \
EXEC:/bin/myscript,chroot=/home/sandbox,su-d=sandbox,pty,stderr

a simple server that accepts connections (TCP4-LISTEN) and fork’s a new child process for each
connection; every child acts as single relay.The client must match the rules for daemon process
name "script" in /etc/hosts.allow and /etc/hosts.deny, otherwise it is refused access (see "man 5
hosts_access"). For EXEC’uting the program, the child process chroot’s to /home/sandbox, su’s
to user sandbox, and then starts the program/home/sandbox/bin/myscript. Socat and myscript
communicate via a pseudo tty (pty); myscript’s stderr is redirected to stdout, so its error messages
are transferred viasocat to the connected client.

socat EXEC:"mail.sh target@domain.com",fdin=3,fdout=4 \
TCP4:mail.relay.org:25,crnl,bind=alias1.server.org,mss=512

Oct 2008 36

socat(1) socat(1)

mail.sh is a shell script, distributed withsocat, that implements a simple SMTP client. It is pro-
grammed to "speak" SMTP on its FDs 3 (in) and 4 (out). The fdin and fdout options tellsocat to
use these FDs for communication with the program. Because mail.sh inherits stdin and stdout
while socat does not use them, the script can read a mail body from stdin.Socat makes alias1 your
local source address (bind), cares for correct network line termination (crnl) and sends at most 512
data bytes per packet (mss).

socat -,raw,echo=0,escape=0x0f /dev/ttyS0,raw,echo=0,crnl

opens an interactive connection via the serial line, e.g. for talking with a modem. raw and echo set
the console’s and ttyS0’s terminal parameters to practicable values, crnl converts to correct new-
line characters. escape allows to terminate the socat process with character control-O.Consider
using READLINE instead of the first address.

socat UNIX-LISTEN:/tmp/.X11-unix/X1,fork \
SOCKS4:host.victim.org:127.0.0.1:6000,socksuser=nobody,sourceport=20

with UNIX-LISTEN, socat opens a listening UNIX domain socket /tmp/.X11-unix/X1. This path
corresponds to local XWindow display :1 on your machine, so XWindow client connections to
DISPLAY=:1 are accepted.Socat then speaks with the SOCKS4 server host.victim.org that might
permit sourceport 20 based connections due to an FTP related weakness in its static IP filters.
Socat pretends to be invoked by socksuser nobody, and requests to be connected to loopback port
6000 (only weak sockd configurations will allow this). So we get a connection to the victims
XWindow server and, if it does not require MIT cookies or Kerberos authentication, we can start
work. Please note that there can only be one connection at a time, because TCP can establish only
one session with a given set of addresses and ports.

socat -u /tmp/readdata,seek-end=0,ignoreeof -

this is an example for unidirectional data transfer (-u).Socat transfers data from file /tmp/readdata
(implicit address GOPEN), starting at its current end (seek-end=0 letssocat start reading at current
end of file; use seek=0 or no seek option to first read the existing data) in a "tail -f" like mode
(ignoreeof). The "file" might also be a listening UNIX domain socket (do not use a seek option
then).

(sleep 5; echo PASSWORD; sleep 5; echo ls; sleep 1) |
socat - EXEC:’ssh -l user server’,pty,setsid,ctty

EXEC’utes an ssh session to server. Uses a pty for communication betweensocat and ssh, makes
it ssh’s controlling tty (ctty), and makes this pty the owner of a new process group (setsid), so ssh
accepts the password fromsocat.

socat -u TCP4-LISTEN:3334,reuseaddr,fork \
OPEN:/tmp/in.log,creat,append

implements a simple network based message collector.For each client connecting to port 3334, a
new child process is generated (option fork). All data sent by the clients are append’ed to the file
/tmp/in.log. If the file does not exist, socat creat’s it. Optionreuseaddr allows immediate restart of
the server process.

socat READLINE,noecho=’[Pp]assword:’ EXEC:’ftp ftp.server.com’,pty,set-
sid,ctty

wraps a command line history (READLINE) around the EXEC’uted ftp client utility.This allows
editing and reuse of FTP commands for relatively comfortable browsing through the ftp directory
hierarchy. The password is echoed!pty is required to have ftp issue a prompt.Nevertheless, there

Oct 2008 37

socat(1) socat(1)

may occur some confusion with the password and FTP prompts.

(socat PTY,link=$HOME/dev/vmodem0,raw,echo=0,waitslave EXEC:’"ssh
modemserver.us.org socat - /dev/ttyS0,nonblock,raw,echo=0"’)

generates a pseudo terminal device (PTY) on the client that can be reached under the symbolic
link $HOME/dev/vmodem0. An application that expects a serial line or modem can be config-
ured to use$HOME/dev/vmodem0; its traffic will be directed to a modemserver via ssh where
another socat instance links it with/dev/ttyS0.

socat TCP4-LISTEN:2022,reuseaddr,fork \
PROXY:proxy:www.domain.org:22,proxyport=3128,proxyauth=user:pass

starts a forwarder that accepts connections on port 2022, and directs them through the proxy dae-
mon listening on port 3128 (proxyport) on host proxy, using the CONNECT method, where they
are authenticated as "user" with "pass" (proxyauth). The proxy should establish connections to
host www.domain.org on port 22 then.

socat - SSL:server:4443,cafile=server.crt,cert=client.pem

is an OpenSSL client that tries to establish a secure connection to an SSL server. Option cafile
specifies a file that contains trust certificates: we trust the server only when it presents one of these
certificates and proofs that it owns the related private key. Otherwise the connection is terminated.
With cert a file containing the client certificate and the associated private key is specified. This is
required in case the server wishes a client authentication; many Internet servers do not.
The first address (’-’) can be replaced by almost any other socat address.

socat SSL-LISTEN:4443,reuse-
addr,pf=ip4,fork,cert=server.pem,cafile=client.crt PIPE

is an OpenSSL server that accepts TCP connections, presents the certificate from the file
server.pem and forces the client to present a certificate that is verified against cafile.crt.
The second address (’PIPE’) can be replaced by almost any other socat address.
For instructions on generating and distributing OpenSSL keys and certificates see the additional
socat docusocat-openssl.txt.

echo |socat -u - file:/tmp/bigfile,create,largefile,seek=100000000000

creates a 100GB sparse file; this requires a file system type that supports this (ext2, ext3, reiserfs,
jfs; not minix, vfat). The operation of writing 1 byte might take long (reiserfs: some minutes; ext2:
"no" time), and the resulting file can consume some disk space with just its inodes (reiserfs: 2MB;
ext2: 16KB).

socat tcp-l:7777,reuseaddr,fork system:’filan -i 0 -s >&2’,nofork

listens for incoming TCP connections on port 7777. For each accepted connection, invokes a shell.
This shell has its stdin and stdout directly connected to the TCP socket (nofork). The shell starts
filan and lets it print the socket addresses to stderr (your terminal window).

echo -e

functions as primitive binary editor: it writes the 4 bytes 000 014 000 000 to the executable
/usr/bin/squid at offset 0x00074420 (this is a real world patch to make the squid executable from
Cygwin run under Windows, actual per May 2004).

Oct 2008 38

socat(1) socat(1)

socat - tcp:www.blackhat.org:31337,readbytes=1000

connects to an unknown service and prevents being flooded.

socat -U TCP:target:9999,end-close TCP-L:8888,reuseaddr,fork

merges data arriving from different TCP streams on port 8888 to just one stream to target:9999.
The end-close option prevents the child processes forked off by the second address from terminat-
ing the shared connection to 9999 (close(2) just unlinks the inode which stays active as long as the
parent process lives; shutdown(2) would actively terminate the connection).

socat - UDP4-DATAGRAM:192.168.1.0:123,sp=123,broad-
cast,range=192.168.1.0/24

sends a broadcast to the network 192.168.1.0/24 and receives the replies of the timeservers there.
Ignores NTP packets from hosts outside this network.

socat - SOCKET-DATA-
GRAM:2:2:17:x007bxc0a80100x0000000000000000,bind=x007bx00000000x0000000000000000,set-
sockopt-
int=1:6:1,range=x0000xc0a80100x0000000000000000:x0000xffffff00x0000000000000000

is semantically equivalent to the previous example, but all parameters are specified in generic
form. the value 6 of setsockopt-int is the Linux value forSO_BROADCAST.

socat - IP4-DATAGRAM:255.255.255.255:44,broadcast,range=10.0.0.0/8

sends a broadcast to the local network(s) using protocol 44. Accepts replies from the private
address range only.

socat - UDP4-DATAGRAM:224.255.0.1:6666,bind=:6666,ip-add-member-
ship=224.255.0.1:eth0

transfers data from stdin to the specified multicast address using UDP. Both local and remote ports
are 6666. Tells the interface eth0 to also accept multicast packets of the given group. Multiple
hosts on the local network can run this command, so all data sent by any of the hosts will be
received by all the other ones. Note that there are many possible reasons for failure, including IP-
filters, routing issues, wrong interface selection by the operating system, bridges, or a badly con-
figured switch.

socat TCP:host2:4443 TUN:192.168.255.1/24,up

establishes one side of a virtual (but not private!) network with host2 where a similar process
might run, with TCP-L and tun address 192.168.255.2. They can reach each other using the
addresses 192.168.255.1 and 192.168.255.2. Substitute the TCP link with an SSL connection pro-
tected by client and server authentication (see OpenSSL client and server).

socat PTY,link=/var/run/ppp,raw,echo=0 INTERFACE:hdlc0

circumvents the problem that pppd requires a serial device and thus might not be able to work on a
synchronous line that is represented by a network device. socatcreates a PTY to make pppd
happy, binds to the network interfacehdlc0, and can transfer data between both devices. Use
pppd on device/var/run/ppp then.

Oct 2008 39

socat(1) socat(1)

socat -T 1 -d -d TCP-L:10081,reuseaddr,fork,crlf SYSTEM:

creates a simple HTTP echo server: each HTTP client that connects gets a valid HTTP reply that
contains information about the client address and port as it is seen by the server host, the host
address (which might vary on multihomed servers), and the original client request.

socat -d -d UDP4-RECVFROM:9999,so-broadcast,so-timestamp,ip-pktinfo,ip-
recverr,ip-recvopts,ip-recvtos,ip-recvttl!!- SYSTEM:’export; sleep 1’
|grep SOCAT

waits for incoming UDP packets on port 9999 and prints the environment variables provided by
socat. On BSD based systems you have to replaceip-pktinfo with ip-recvdstaddr,ip-
recvif. Especially interesting is SOCAT_IP_DSTADDR: it contains the target address of the
packet which may be a unicast, multicast, or broadcast address.

DIAGNOSTICS
Socat uses a logging mechanism that allows to filter messages by severity. The severities provided are more
or less compatible to the appropriate syslog priority. With one or up to four occurrences of the -d command
line option, the lowest priority of messages that are issued can be selected. Each message contains a single
uppercase character specifying the messages severity (one of F, E, W, N, I, or D)

FATAL:
Conditions that require unconditional and immediate program termination.

ERROR:
Conditions that prevent proper program processing. Usually the program is terminated (see option
-s).

WARNING:
Something did not function correctly or is in a state where correct further processing cannot be
guaranteed, but might be possible.

NOTICE:
Interesting actions of the program, e.g. for supervisingsocat in some kind of server mode.

INFO: Descriptionof what the program does, and maybe why it happens. Allows to monitor the lifecy-
cles of file descriptors.

DEBUG:
Description of how the program works, all system or library calls and their results.

Log messages can be written to stderr, to a file, or to syslog.

On exit, socat gives status 0 if it terminated due to EOF or inactivity timeout, with a positive value on error,
and with a negative value on fatal error.

FILES
/usr/bin/socat
/usr/bin/filan
/usr/bin/procan

ENVIRONMENT VARIABLES
Input variables carry information from the environment to socat, output variables are set by socat for use in
executed scripts and programs.

In the output variables beginning with "SOCAT" this prefix is actually replaced by the upper case name of
the executable or the value of option -lp.

Oct 2008 40

socat(1) socat(1)

SOCAT_DEFAULT_LISTEN_IP (input)
(Values 4 or 6) Sets the IP version to be used for listen, recv, and recvfrom addresses if no pf (pro-
tocol-family) option is given. Is overridden by socat options -4 or -6.

SOCAT_PREFERRED_RESOLVE_IP (input)
(Values 0, 4, or 6) Sets the IP version to be used when resolving target host names when version is
not specified by address type, option pf (protocol-family), or address format. If name resolution
does not return a matching entry, the first result (with differing IP version) is taken. With value 0,
socat always selects the first record and its IP version.

SOCAT_FORK_WAIT (input)
Specifies the time (seconds) to sleep the parent and child processes after successful fork(). Useful
for debugging.

SOCAT_VERSION (output)
Socat sets this variable to its version string, e.g."1.7.0.0" for released versions or e.g.
"1.6.0.1+envvar" for temporary versions; can be used in scripts invoked by socat.

SOCAT_PID (output)
Socat sets this variable to its process id. In case of fork address option, SOCAT_PID gets the child
processes id. Forking for exec and system does not change SOCAT_PID.

SOCAT_PPID (output)
Socat sets this variable to its process id. In case of fork, SOCAT_PPID keeps the pid of the master
process.

SOCAT_PEERADDR (output)
With passive socket addresses (all LISTEN and RECVFROM addresses), this variable is set to a
string describing the peers socket address. Port information is not included.

SOCAT_PEERPORT (output)
With appropriate passive socket addresses (TCP, UDP, and SCTP - LISTEN and RECVFROM),
this variable is set to a string containing the number of the peer port.

SOCAT_SOCKADDR (output)
With all LISTEN addresses, this variable is set to a string describing the local socket address. Port
information is not included example

SOCAT_SOCKPORT (output)
With TCP-LISTEN, UDP-LISTEN, and SCTP-LISTEN addresses, this variable is set to the local
port.

SOCAT_TIMESTAMP (output)
With all RECVFROM addresses where address option so-timestamp is applied, socat sets this
variable to the resulting timestamp.

SOCAT_IP_OPTIONS (output)
With all IPv4 based RECVFROM addresses where address option ip-recvopts is applied, socat fills
this variable with the IP options of the received packet.

SOCAT_IP_DSTADDR (output)
With all IPv4 based RECVFROM addresses where address option ip-recvdstaddr (BSD) or ip-pkt-
info (other platforms) is applied, socat sets this variable to the destination address of the received
packet. This is particularly useful to identify broadcast and multicast addressed packets.

Oct 2008 41

socat(1) socat(1)

SOCAT_IP_IF (output)
With all IPv4 based RECVFROM addresses where address option ip-recvif (BSD) or ip-pktinfo
(other platforms) is applied, socat sets this variable to the name of the interface where the packet
was received.

SOCAT_IP_LOCADDR (output)
With all IPv4 based RECVFROM addresses where address option ip-pktinfo is applied, socat sets
this variable to the address of the interface where the packet was received.

SOCAT_IP_TOS (output)
With all IPv4 based RECVFROM addresses where address option ip-recvtos is applied, socat sets
this variable to the TOS (type of service) of the received packet.

SOCAT_IP_TTL (output)
With all IPv4 based RECVFROM addresses where address option ip-recvttl is applied, socat sets
this variable to the TTL (time to live) of the received packet.

SOCAT_IPV6_HOPLIMIT (output)
With all IPv6 based RECVFROM addresses where address option ipv6-recvhoplimit is applied,
socat sets this variable to the hoplimit value of the received packet.

SOCAT_IPV6_DSTADDR (output)
With all IPv6 based RECVFROM addresses where address option ipv6-recvpktinfo is applied,
socat sets this variable to the destination address of the received packet.

SOCAT_IPV6_TCLASS (output)
With all IPv6 based RECVFROM addresses where address option ipv6-recvtclass is applied, socat
sets this variable to the transfer class of the received packet.

HOSTNAME (input)
Is used to determine the hostname for logging (see -lh).

LOGNAME (input)
Is used as name for the socks client user name if no socksuser is given.
With options su and su-d, LOGNAME is set to the given user name.

USER (input)
Is used as name for the socks client user name if no socksuser is given and LOGNAME is empty.
With options su and su-d, USER is set to the given user name.

SHELL (output)
With options su and su-d, SHELL is set to the login shell of the given user.

PATH (output)
Can be set with option path for exec and system addresses.

HOME (output)
With options su and su-d, HOME is set to the home directory of the given user.

CREDITS
The work of the following groups and organizations was invaluable for this project:

The FSF (GNU, http://www.fsf.org/ project with their free and portable development software and lots of
other useful tools and libraries.

The Linux developers community (http://www.linux.org/) for providing a free, open source operating sys-
tem.

The Open Group (http://www.unix-systems.org/) for making their standard specifications available on the

Oct 2008 42

socat(1) socat(1)

Internet for free.

VERSION
This man page describes version 1.7.0 ofsocat.

BUGS
Addresses cannot be nested, so a single socat process cannot, e.g., drive ssl over socks.

Address option ftruncate without value uses default 1 instead of 0.

Verbose modes (-x and/or -v) display line termination characters inconsistently when address options cr or
crnl are used: They show the dataafter conversion in either direction.

The data transfer blocksize setting (-b) is ignored with address readline.

Send bug reports to <socat@dest-unreach.org>

SEE ALSO
nc(1), netcat6(1), sock(1), rinetd(8), cage(1), socks.conf(5), openssl(1), stunnel(8), pty(1), rlwrap(1), set-
sid(1)

Socat home page http://www.dest-unreach.org/socat/

AUTHOR
Gerhard Rieger <rieger@dest-unreach.org>

Oct 2008 43

